搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环氧树脂高温分子链松弛与玻璃化转变特性

林生军 黄印 谢东日 闵道敏 王威望 杨柳青 李盛涛

引用本文:
Citation:

环氧树脂高温分子链松弛与玻璃化转变特性

林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛

Molecular relaxation and glass transition properties of epoxy resin at high temperature

Lin Sheng-Jun, Huang Yin, Xie Dong-Ri, Min Dao-Min, Wang Wei-Wang, Yang Liu-Qing, Li Sheng-Tao
PDF
导出引用
  • 环氧树脂是电力设备中广泛应用的一种绝缘材料, 其介电性能受到分子链运动特性的影响. 本文制备了直径为50 mm、厚度为1 mm的环氧树脂试样, 采用差示扫描量热仪和宽频介电谱仪测试了环氧树脂的玻璃化转变温度和介电特性. 实验结果表明, 环氧树脂的玻璃化转变温度为105 ℃, 在玻璃化转变温度以上, 高频段出现了由分子链段运动造成的松弛过程, 低频段出现了由载流子在材料中迁移造成的直流电导过程. 发现环氧树脂不同尺寸分子链段的松弛时间不同, 其松弛时间分布较宽, 计算得到了分子链段在不同温度下的松弛时间分布特性. 分子链松弛峰频率和直流电导随温度的变化关系服从Vogel-Tammann-Fulcher公式. 拟合实验结果得到分子链松弛峰频率和直流电导的Vogel温度和强度系数. 由Vogel温度计算得到了与差示扫描量热测试结果一致的玻璃化转变温度, 约为102 ℃. 结果表明玻璃化转变温度以上环氧树脂的自由体积增大, 分子链段有足够的空间来响应外电场从而产生分子链松弛极化, 载流子有足够的能量在材料中迁移形成电导.
    Epoxy resin is widely used as a polymeric insulating material in power equipment, such as gas-insulated switchgear and gas-insulated lines. The motions of molecular chains or segmental chains in a polymeric insulating material can affect the material properties, such as dielectric relaxation, charge transport, breakdown, and glass transition temperature. Molecular or segmental chains may form dipoles, and their motions can contribute to dielectric relaxation properties. Molecular or segmental chains with different scales have different relaxation time constants. Their motions affect dielectric relaxation processes in different frequency ranges. The motions of molecular or segmental chains are also affected by temperature, since the magnitudes of motions are restricted by free volume in a polymeric insulating material. However, the effects of motions of molecular or segmental chains in epoxy resin on electrical properties have not been very clear to date. Therefore, it is important to investigate the relations between the motion of molecular or segmental chains and dielectric relaxation properties, the temperature and molecular scale dependence of the motions, and their effects on charge transport of epoxy resin. In this paper, the properties of dielectric relaxation and glass transition of epoxy resin are measured. Before the experimental tests, samples of pure epoxy resin are prepared by using epoxy raw materials supplied by Pinggao Group, and the curing temperature is 130 ℃. The glass transition temperature is around 105 ℃ measured by a differential scanning calorimetry (DSC). As for the dielectric relaxation measurement with Novocontrol broadband dielectric relaxation spectroscopy, the sample is processed into a disk with a diameter of 50 mm and a thickness of 1 mm. The measurement temperature and frequency are in ranges of 100-180 ℃ and 10-1-107 Hz, respectively. The results reveal that there are two relaxation processes at high temperature. In addition, above glass transition temperature, a relaxation peak occurs at high frequencies due to the motions of molecular chains or segmental chains, and a direct current (DC) conductivity resulting from the migration of charge carriers appears at low frequencies. Besides, molecular chains with different scales have different relaxation times. It is found that epoxy resin has a very broad distribution of relaxation times. The distributions of relaxation times at various temperatures are calculated. The results show that the temperature dependence of molecular relaxation and DC conductivity satisfy Vogel-Tammann-Fulcher equation. Through fitting the experimental results, the Vogel temperatures and strength parameters of molecular relaxation and DC conductivity are obtained. From the Vogel temperatures, the glass transition temperature is estimated to be 102 ℃, which is consistent with the DSC result. It means that free volume in epoxy resin increases with the increase of temperature, which facilitates the motions of molecular chains and the migration of charge carriers.
      通信作者: 闵道敏, forrestmin@xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB251003)、中国博士后科学基金(批准号: 2014M552449)、中央高校基本科研业务费(批准号: xjj2014022)和西安交通大学新教师支持计划(批准号: DWSQc130000008)资助的课题.
      Corresponding author: Min Dao-Min, forrestmin@xjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB251003), the China Postdoctoral Science Foundation (Grant No. 2014M552449), the Fundamental Research Fund for the Central Universities, China (Grant No. xjj2014022), and the Program for New Teacher of Xi'an Jiaotong University, China (Grant No. DWSQc130000008).
    [1]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]

    [2]

    Wang X F 2009 Fundamentals of Electrical Engineering (Xi'an: Xi'an Jiaotong University Press) p20 (in Chinese) [王锡凡 2009 电气工程基础 (西安: 西安交通大学出版社) 第20页]

    [3]

    Dang Z M, Wang H Y, Peng B, Lei Q Q 2006 Proc. CSEE 26 100 (in Chinese) [党智敏, 王海燕, 彭勃, 雷清泉 2006 电机工程学报 26 100]

    [4]

    Huang X Y, Jiang P K, Jin T X, Ke Q Q 2007 Prog. Chem. 19 1776 (in Chinese) [黄兴溢, 江平开, 金天雄, 柯清泉 2007 化学进展 19 1776]

    [5]

    De L A, Grando L, Pesce A, Bettini P, Specogna R 2009 Trans. Dielectr. Electr. Insul. 16 77

    [6]

    Tenbohlem S, Schrocher G 2000 IEEE Trans. Dielectr. Electr. Insul. 7 241

    [7]

    Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055

    [8]

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press) p90 (in Chinese) [金维芳 1997 电介质物理学 (北京: 机械工业出版社) 第90页]

    [9]

    Kremer F, Schönhals A 2003 Broadband Dielectric Spectroscopy (Berlin: Springer) p385

    [10]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Elsevier Academic Press) p41

    [11]

    Lowell J 1990 J. Phys. D: Appl. Phys. 23 205

    [12]

    Min D M, Li S T, Ohki Y 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials Sydney, Australia, July 19-22 2015 p368

    [13]

    Xu J, Li J 1999 Acta Phys. Sin. 48 1930 (in Chinese) [徐敬, 李杰 1999 物理学报 48 1930]

    [14]

    Ning C F, He C Q, Zhang M, Hu C P, Wang B, Wang S J 2001 Acta Polym. Sin. 1 299 (in Chinese) [宁超峰, 何春清, 张明, 胡春圃, 王波, 王少阶 2001 高分子学报 1 299]

    [15]

    Wei L, Zhou L L, Lu G H, Zhang W, Zhang W Z, Zhang S, Feng Y H, Zhou H W, Zhang J L, Huang Y N 2012 Acta Phys. Sin. 61 017701 (in Chinese) [卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能 2012 物理学报 61 017701]

    [16]

    Badawia A, Al-Hosiny N 2015 Chin. Phys. B 24 105101

    [17]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535

    [18]

    Min D M, Li S T, Hirai N, Ohki Y 2015 Proceedings of the 46th Symposium on Electrical and Electronic Insulating Materials and Applications in Systems Kyushu, Japan, September 4-6, 2015 p39

    [19]

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Shanghai: Fudan University Press) p224 (in Chinese) [何曼君, 陈维孝, 董西侠 1990 高分子物理 (上海: 复旦大学出版社) 第224]

    [20]

    Alvarez F, Alegría A, Colmenero J 1991 Phys. Rev. B 44 7306

    [21]

    Angell C A 1997 Polymer 38 6261

    [22]

    Dudowicz J, Freed K F, Douglas J F 2005 J. Phys. Chem. B 109 21285

    [23]

    Schönhals A, Kremer F, Hofmann A, Fischer E W, Schlosser E 1993 Phys. Rev. Lett. 70 3459

  • [1]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]

    [2]

    Wang X F 2009 Fundamentals of Electrical Engineering (Xi'an: Xi'an Jiaotong University Press) p20 (in Chinese) [王锡凡 2009 电气工程基础 (西安: 西安交通大学出版社) 第20页]

    [3]

    Dang Z M, Wang H Y, Peng B, Lei Q Q 2006 Proc. CSEE 26 100 (in Chinese) [党智敏, 王海燕, 彭勃, 雷清泉 2006 电机工程学报 26 100]

    [4]

    Huang X Y, Jiang P K, Jin T X, Ke Q Q 2007 Prog. Chem. 19 1776 (in Chinese) [黄兴溢, 江平开, 金天雄, 柯清泉 2007 化学进展 19 1776]

    [5]

    De L A, Grando L, Pesce A, Bettini P, Specogna R 2009 Trans. Dielectr. Electr. Insul. 16 77

    [6]

    Tenbohlem S, Schrocher G 2000 IEEE Trans. Dielectr. Electr. Insul. 7 241

    [7]

    Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055

    [8]

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press) p90 (in Chinese) [金维芳 1997 电介质物理学 (北京: 机械工业出版社) 第90页]

    [9]

    Kremer F, Schönhals A 2003 Broadband Dielectric Spectroscopy (Berlin: Springer) p385

    [10]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Elsevier Academic Press) p41

    [11]

    Lowell J 1990 J. Phys. D: Appl. Phys. 23 205

    [12]

    Min D M, Li S T, Ohki Y 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials Sydney, Australia, July 19-22 2015 p368

    [13]

    Xu J, Li J 1999 Acta Phys. Sin. 48 1930 (in Chinese) [徐敬, 李杰 1999 物理学报 48 1930]

    [14]

    Ning C F, He C Q, Zhang M, Hu C P, Wang B, Wang S J 2001 Acta Polym. Sin. 1 299 (in Chinese) [宁超峰, 何春清, 张明, 胡春圃, 王波, 王少阶 2001 高分子学报 1 299]

    [15]

    Wei L, Zhou L L, Lu G H, Zhang W, Zhang W Z, Zhang S, Feng Y H, Zhou H W, Zhang J L, Huang Y N 2012 Acta Phys. Sin. 61 017701 (in Chinese) [卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能 2012 物理学报 61 017701]

    [16]

    Badawia A, Al-Hosiny N 2015 Chin. Phys. B 24 105101

    [17]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535

    [18]

    Min D M, Li S T, Hirai N, Ohki Y 2015 Proceedings of the 46th Symposium on Electrical and Electronic Insulating Materials and Applications in Systems Kyushu, Japan, September 4-6, 2015 p39

    [19]

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Shanghai: Fudan University Press) p224 (in Chinese) [何曼君, 陈维孝, 董西侠 1990 高分子物理 (上海: 复旦大学出版社) 第224]

    [20]

    Alvarez F, Alegría A, Colmenero J 1991 Phys. Rev. B 44 7306

    [21]

    Angell C A 1997 Polymer 38 6261

    [22]

    Dudowicz J, Freed K F, Douglas J F 2005 J. Phys. Chem. B 109 21285

    [23]

    Schönhals A, Kremer F, Hofmann A, Fischer E W, Schlosser E 1993 Phys. Rev. Lett. 70 3459

计量
  • 文章访问数:  3034
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2016-01-13
  • 刊出日期:  2016-04-05

环氧树脂高温分子链松弛与玻璃化转变特性

  • 1. 平高集团有限公司, 国家电网高压开关设备绝缘材料实验室, 平顶山 467001;
  • 2. 西安交通大学, 电力设备电气绝缘国家重点实验室, 西安 710049
  • 通信作者: 闵道敏, forrestmin@xjtu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号: 2015CB251003)、中国博士后科学基金(批准号: 2014M552449)、中央高校基本科研业务费(批准号: xjj2014022)和西安交通大学新教师支持计划(批准号: DWSQc130000008)资助的课题.

摘要: 环氧树脂是电力设备中广泛应用的一种绝缘材料, 其介电性能受到分子链运动特性的影响. 本文制备了直径为50 mm、厚度为1 mm的环氧树脂试样, 采用差示扫描量热仪和宽频介电谱仪测试了环氧树脂的玻璃化转变温度和介电特性. 实验结果表明, 环氧树脂的玻璃化转变温度为105 ℃, 在玻璃化转变温度以上, 高频段出现了由分子链段运动造成的松弛过程, 低频段出现了由载流子在材料中迁移造成的直流电导过程. 发现环氧树脂不同尺寸分子链段的松弛时间不同, 其松弛时间分布较宽, 计算得到了分子链段在不同温度下的松弛时间分布特性. 分子链松弛峰频率和直流电导随温度的变化关系服从Vogel-Tammann-Fulcher公式. 拟合实验结果得到分子链松弛峰频率和直流电导的Vogel温度和强度系数. 由Vogel温度计算得到了与差示扫描量热测试结果一致的玻璃化转变温度, 约为102 ℃. 结果表明玻璃化转变温度以上环氧树脂的自由体积增大, 分子链段有足够的空间来响应外电场从而产生分子链松弛极化, 载流子有足够的能量在材料中迁移形成电导.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回