搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向单分子检测的纳米孔传感特异性增强技术

潘钦杰 赵灿东 陈琪 何毓辉 缪向水

引用本文:
Citation:

面向单分子检测的纳米孔传感特异性增强技术

潘钦杰, 赵灿东, 陈琪, 何毓辉, 缪向水

Nanopore sensing specific enhancement technique for single molecule detection

Pan Qin-Jie, Zhao Can-Dong, Chen Qi, He Yu-Hui, Miao Xiang-Shui
PDF
导出引用
  • 基于纳米孔的传感器目前已经成为了分析生物标志物的重要工具,包括但不限于核酸,蛋白质以及其他在生命活动中发挥重要作用的分子。作为一种创新的单分子检测技术,纳米孔传感本身并不具有特异性,通过表面官能化以及分子探针技术可以提升纳米孔传感对样本中的目标生物标志物的响应灵敏度。本文首先介绍了纳米孔传感的原理、分类,然后讨论了纳米孔表面改性的方法以及近年来纳米孔传感中待测分子特异性增强技术的发展和应用,特异性增强技术主要包含表面官能化以及分子探针两种形式,其中表面官能化以官能化分子类别分类,分子探针以载体形式分类。最后,本文总结了纳米孔传感仍然存在的若干挑战,并对纳米孔未来发展提出了若干建议。
    Nanopore sensors have become important tools for analyzing biomarkers, including but not limited to nucleic acids, proteins, and other biomolecules that play important roles in life. Though the nanopores themselves have no selectivity towards target molecules, with the help of the specificity enhancement technology, higher sensitivity of nanopore sensing in respond to the target biomarkers could be achieved. In this work, the basic principles of nanopore sensing are introduced first, then methods of nanopore surface modification as well as the development and application of those selectivity enhancement technologies of nanopore sensing in recent years are reviewed. These enhancement technologies primarily fall into two categories: surface functionalization and molecular probes. Surface functionalization is further categorized based on the types of functional molecules employed, while molecular probes are classified by carrier forms. Finally, the paper discusses several challenges that nanopore sensing continues to encounter and proposes suggestions for its future development.
  • [1]

    Yamazaki H,Hu R,Henley R Y,Halman J,Afonin K A,Yu D,Zhao Q,Wanunu M 2017 Nano Lett. 17 7067

    [2]

    Kim J-D,Lee Y-G 2014 Biomed. Opt. Express 5 2471

    [3]

    Verschueren D,Shi X,Dekker C 2019 Small Methods 3 1800465

    [4]

    Fologea D,Gershow M,Ledden B,McNabb D S,Golovchenko J A,Li J 2005 Nano Lett. 5 1905

    [5]

    Xue L,Yamazaki H,Ren R,Wanunu M,Ivanov A P,Edel J B 2020 Nat. Rev. Mater. 5 931

    [6]

    Elaguech M A,Bahri M,Djebbi K,Zhou D,Shi B,Liang L,Komarova N,Kuznetsov A,Tlili C,Wang D 2022 Food Chem. 389 133051

    [7]

    Beamish E,Tabard-Cossa V,Godin M 2019 ACS Sens. 4 2458

    [8]

    Wang L,Han Y,Zhou S,Guan X 2014 Biosens. Bioelectron. 62 158

    [9]

    Oh S,Lee M-K,Chi S-W 2019 ACS Sens. 4 2849

    [10]

    He L,Tessier D R,Briggs K,Tsangaris M,Charron M,McConnell E M,Lomovtsev D,Tabard-Cossa V 2021 Nat. Commun. 12 5348

    [11]

    Chen X,Zhou S,Wang Y,Zheng L,Guan S,Wang D,Wang L,Guan X 2023 TrAC, Trends Anal. Chem. 162 117060

    [12]

    Ying Y L,Zhang J,Gao R,Long Y T 2013 Angew. Chem. Int. Ed. 52 13154

    [13]

    Haque F,Li J,Wu H-C,Liang X-J,Guo P 2013 Nano Today 8 56

    [14]

    Li S-J,Xia N,Yuan B-Q,Du W-M,Sun Z-F,Zhou B-B 2015 Electrochim. Acta 159 234

    [15]

    Ali M,Neumann R,Ensinger W 2010 ACS Nano 4 7267

    [16]

    Ding D,Gao P,Ma Q,Wang D,Xia F 2019 Small 15 1804878

    [17]

    Wang H-Y,Gu Z,Cao C,Wang J,Long Y-T 2013 Anal. Chem. 85 8254

    [18]

    Piguet F,Ouldali H,Pastoriza-Gallego M,Manivet P,Pelta J,Oukhaled A 2018 Nat. Commun. 9 966

    [19]

    Liu Y,Zhang S,Wang Y,Wang L,Cao Z,Sun W,Fan P,Zhang P,Chen H-Y,Huang S 2022 Journal of the American Chemical Society 144 13717

    [20]

    Hou G,Zhang H,Xie G,Xiao K,Wen L,Li S,Tian Y,Jiang L 2014 J. Mater. Chem. A 2 19131

    [21]

    Guo L,Liu Y,Zeng H,Zhang S,Song R,Yang J,Han X,Wang Y,Wang L 2024 Adv. Mater. 36 2307242

    [22]

    Ying Y-L,Hu Z-L,Zhang S,Qing Y,Fragasso A,Maglia G,Meller A,Bayley H,Dekker C,Long Y-T 2022 Nat. Nanotechnol. 17 1136

    [23]

    Mayer S F,Cao C,Dal Peraro M 2022 iScience 25 104145

    [24]

    Lee K,Park K B,Kim H J,Yu J S,Chae H,Kim H M,Kim K B 2018 Adv. Mater. 30 1704680

    [25]

    Wanunu M,Meller A 2007 Nano Lett. 7 1580

    [26]

    Anderson B N,Muthukumar M,Meller A 2013 ACS Nano 7 1408

    [27]

    Soni N,Chandra Verma N,Talor N,Meller A 2023 Nano Lett. 23 4609

    [28]

    Tang Z,Lu B,Zhao Q,Wang J,Luo K,Yu D 2014 Small 10 4332

    [29]

    Schneider G F,Xu Q,Hage S,Luik S,Spoor J N H,Malladi S,Zandbergen H,Dekker C 2013 Nat. Commun. 4 2619

    [30]

    Yusko E C,Prangkio P,Sept D,Rollings R C,Li J,Mayer M 2012 ACS Nano 6 5909

    [31]

    Li Q,Ying Y-L,Liu S-C,Lin Y,Long Y-T 2019 ACS Sens. 4 1185

    [32]

    Feng S,Chen C,Wang W,Que L 2018 Biosens. Bioelectron. 105 36

    [33]

    Wilson D S,Szostak J W 1999 Annu. Rev. Biochem. 68 611

    [34]

    Zhou J,Rossi J 2016 Nat. Rev. Drug Discovery 16 181

    [35]

    Negrier C,Shima M,Hoffman M 2019 Blood Reviews 38 100582

    [36]

    Jaberi N,Soleimani A,Pashirzad M,Abdeahad H,Mohammadi F,Khoshakhlagh M,Khazaei M,Ferns G A,Avan A,Hassanian S M 2018 J. Cell. Biochem. 120 4757

    [37]

    Bock L C,Griffin L C,Latham J A,Vermaas E H,Toole J J 1992 Nature 355 564

    [38]

    Rotem D,Jayasinghe L,Salichou M,Bayley H 2012 Journal of the American Chemical Society 134 2781

    [39]

    Reynaud L,Bouchet-Spinelli A,Janot J-M,Buhot A,Balme S,Raillon C 2021 Anal. Chem. 93 7889

    [40]

    Cao M,Zhang L,Tang H,Qiu X,Li Y 2022 Anal. Chem. 94 17405

    [41]

    Chou J,Shahi P,Werb Z 2014 Cell Cycle 12 3262

    [42]

    Qiu X,Dong J,Dai Q,Huang M,Li Y 2023 Biosens. Bioelectron. 240 115594

    [43]

    Peinetti A S,Lake R J,Cong W,Cooper L,Wu Y,Ma Y,Pawel G T,Toimil-Molares M E,Trautmann C,Rong L,Mariñas B,Azzaroni O,Lu Y 2021 Sci. Adv. 7 eabh2848

    [44]

    Wu D,Wu T,Liu Q,Yang Z 2020 International Journal of Infectious Diseases 94 44

    [45]

    Wu F,Zhao S,Yu B,Chen Y-M,Wang W,Song Z-G,Hu Y,Tao Z-W,Tian J-H,Pei Y-Y,Yuan M-L,Zhang Y-L,Dai F-H,Liu Y,Wang Q-M,Zheng J-J,Xu L,Holmes E C,Zhang Y-Z 2020 Nature 579 265

    [46]

    Kim D,Lee J-Y,Yang J-S,Kim J W,Kim V N,Chang H 2020 Cell 181 914

    [47]

    Ma W,Xie W,Tian R,Zeng X,Liang L,Hou C,Huo D,Wang D 2023 Sens. Actuators, B 377 133075

    [48]

    Albrecht C,Kuznetsov A S,Appert-Collin A,Dhaideh Z,Callewaert M,Bershatsky Y V,Urban A S,Bocharov E V,Bagnard D,Baud S,Blaise S,Romier-Crouzet B,Efremov R G,Dauchez M,Duca L,Gueroult M,Maurice P,Bennasroune A 2020 Front. Cell Dev. Biol. 8

    [49]

    Kwak D-K,Kim J-S,Lee M-K,Ryu K-S,Chi S-W 2020 Anal. Chem. 92 14303

    [50]

    Zhang X,Galenkamp N S,van der Heide N J,Moreno J,Maglia G,Kjems J 2023 ACS Nano 17 9167

    [51]

    Thakur A K,Movileanu L 2018 Nat. Biotechnol. 37 96

    [52]

    Ali M,Yameen B,Neumann R,Ensinger W,Knoll W,Azzaroni O 2008 Journal of the American Chemical Society 130 16351

    [53]

    Liu Y,Xuan W,Cui Y 2010 Adv. Mater. 22 4112

    [54]

    Fortuna A,Alves G,Falcão A 2013 Biomed. Chromatogr. 28 27

    [55]

    Wang J,Prajapati J D,Gao F,Ying Y-L,Kleinekathöfer U,Winterhalter M,Long Y-T 2022 Journal of the American Chemical Society 144 15072

    [56]

    Ramirez J,He F,Lebrilla C B 1998 Journal of the American Chemical Society 120 7387

    [57]

    Kim B Y,Yang J,Gong M,Flachsbart B R,Shannon M A,Bohn P W,Sweedler J V 2009 Anal. Chem. 81 2715

    [58]

    Han C,Hou X,Zhang H,Guo W,Li H,Jiang L 2011 Journal of the American Chemical Society 133 7644

    [59]

    Xie G,Tian W,Wen L,Xiao K,Zhang Z,Liu Q,Hou G,Li P,Tian Y,Jiang L 2015 Chem. Commun. 51 3135

    [60]

    Jia W,Hu C,Wang Y,Gu Y,Qian G,Du X,Wang L,Liu Y,Cao J,Zhang S,Yan S,Zhang P,Ma J,Chen H-Y,Huang S 2021 Nat. Commun. 12 5811

    [61]

    Jia W,Hu C,Wang Y,Liu Y,Wang L,Zhang S,Zhu Q,Gu Y,Zhang P,Ma J,Chen H-Y,Huang S 2022 ACS Nano 16 6615

    [62]

    Wang Y,Fan P,Zhang S,Wang L,Li X,Jia W,Liu Y,Wang K,Du X,Zhang P,Huang S 2022 ACS Nano 16 21356

    [63]

    Talaga D S,Li J 2009 Journal of the American Chemical Society 131 9287

    [64]

    Firnkes M,Pedone D,Knezevic J,Döblinger M,Rant U 2010 Nano Lett. 10 2162

    [65]

    Sze J Y Y,Ivanov A P,Cass A E G,Edel J B 2017 Nat. Commun. 8 1552

    [66]

    Wanunu M,Dadosh T,Ray V,Jin J,McReynolds L,Drndić M 2010 Nat. Nanotechnol. 5 807

    [67]

    Carlsen A T,Zahid O K,Ruzicka J A,Taylor E W,Hall A R 2014 Nano Lett. 14 5488

    [68]

    Zahid O K,Wang F,Ruzicka J A,Taylor E W,Hall A R 2016 Nano Lett. 16 2033

    [69]

    Ilktac A,Kalkan S,Caliskan S 2020 International Journal of Clinical Practice 75 e13935

    [70]

    Mosquera‐Sulbaran J A,Pedreañez A,Carrero Y,Callejas D 2021 Rev. Med. Virol. 31 e2221

    [71]

    Tatsuoka T,Okuyama T,Takeshita E,Oi H,Noro T,Mitsui T,Yoshitomi H,Oya M 2020 Surgery Today 51 397

    [72]

    Wu J,Liang L,Zhang M,Zhu R,Wang Z,Yin Y,Yin B,Weng T,Fang S,Xie W,Wang L,Wang D 2022 ACS Appl. Mater. Interfaces 14 12077

    [73]

    Zou Z,Yang H,Yan Q,Qi P,Qing Z,Zheng J,Xu X,Zhang L,Feng F,Yang R 2019 Chem. Commun. 55 6433

    [74]

    Saha K,Agasti S S,Kim C,Li X,Rotello V M 2012 Chem. Rev. 112 2739

    [75]

    Wang H,Yang R,Yang L,Tan W 2009 ACS Nano 3 2451

    [76]

    Billinge E R,Broom M,Platt M 2013 Anal. Chem. 86 1030

    [77]

    Blundell E L C J,Vogel R,Platt M 2016 Langmuir 32 1082

    [78]

    Hernández-Neuta I,Pereiro I,Ahlford A,Ferraro D,Zhang Q,Viovy J-L,Descroix S,Nilsson M 2018 Biosens. Bioelectron. 102 531

    [79]

    Kühnemund M,Nilsson M 2015 Biosens. Bioelectron. 67 11

    [80]

    Rosen C B,Rodriguez-Larrea D,Bayley H 2014 Nat. Biotechnol. 32 179

    [81]

    Zhang Z,Wang X,Wei X,Zheng S W,Lenhart B J,Xu P,Li J,Pan J,Albrecht H,Liu C 2021 Biosens. Bioelectron. 181 113134

    [82]

    Karhanek M,Kemp J T,Pourmand N,Davis R W,Webb C D 2005 Nano Lett. 5 403

    [83]

    Wang H,Tang H,Yang C,Li Y 2019 Anal. Chem. 91 7965

    [84]

    Tang H,Wang H,Yang C,Zhao D,Qian Y,Li Y 2020 Anal. Chem. 92 3042

    [85]

    Zhang Z,Li T,Sheng Y,Liu L,Wu H C 2018 Small 15 1804078

    [86]

    Wang X,Wei X,van der Zalm M M,Zhang Z,Subramanian N,Demers A-M,Ghimenton Walters E,Hesseling A,Liu C 2023 ACS Nano 17 21093

    [87]

    Japrung D,Bahrami A,Nadzeyka A,Peto L,Bauerdick S,Edel J B,Albrecht T 2014 The Journal of Physical Chemistry B 118 11605

    [88]

    Bell N A W,Keyser U F 2015 Journal of the American Chemical Society 137 2035

    [89]

    Squires A,Atas E,Meller A 2015 Sci. Rep. 5 11643

    [90]

    Plesa C,Ruitenberg J W,Witteveen M J,Dekker C 2015 Nano Lett. 15 3153

    [91]

    Kulenkampff K,Wolf Perez A-M,Sormanni P,Habchi J,Vendruscolo M 2021 Nat. Rev. Chem. 5 277

    [92]

    van Steenoven I,Majbour N K,Vaikath N N,Berendse H W,van der Flier W M,van de Berg W D J,Teunissen C E,Lemstra A W,El‐Agnaf O M A 2018 Movement Disorders 33 1724

    [93]

    Liu Y,Wang X,Campolo G,Teng X,Ying L,Edel J B,Ivanov A P 2023 ACS Nano 17 22999

    [94]

    Ivankin A,Henley R Y,Larkin J,Carson S,Toscano M L,Wanunu M 2014 ACS Nano 8 10774

    [95]

    Cai S,Pataillot-Meakin T,Shibakawa A,Ren R,Bevan C L,Ladame S,Ivanov A P,Edel J B 2021 Nat. Commun. 12 3515

    [96]

    Chandrasekaran A R,MacIsaac M,Vilcapoma J,Hansen C H,Yang D,Wong W P,Halvorsen K 2021 Nano Lett. 21 469

    [97]

    Koussa M A,Halvorsen K,Ward A,Wong W P 2015 Nat. Methods 12 123

    [98]

    Zhu J,Tivony R,Bošković F,Pereira-Dias J,Sandler S E,Baker S,Keyser U F 2023 Journal of the American Chemical Society 145 12115

    [99]

    Al-Zarah H,Serag M F,Abadi M,Habuchi S 2023 ACS Appl. Nano Mater. 6 9515

    [100]

    Ding T,Yang J,Wang J,Pan V,Lu Z,Ke Y,Zhang C 2022 Biosens. Bioelectron. 195 113658

    [101]

    Kim S H,Kim K-R,Ahn D-R,Lee J E,Yang E G,Kim S Y 2017 ACS Nano 11 9352

    [102]

    Yang J,Wang J,Liu X,Chen Y,Liang Y,Wang Q,Jiang S,Zhang C 2023 Small 19 2303715

  • [1] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, doi: 10.7498/aps.73.20231265
    [2] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, doi: 10.7498/aps.70.20210764
    [3] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 单分子光学探针揭示易混聚合物受限纳米区域的动力学. 物理学报, doi: 10.7498/aps.68.20190423
    [4] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报, doi: 10.7498/aps.65.218201
    [5] 袁飞, 张传彪, 周昕, 黎明. 基于氨基酸位置特异性的蛋白质Loop区结构预测改进方法. 物理学报, doi: 10.7498/aps.65.158701
    [6] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究. 物理学报, doi: 10.7498/aps.64.046101
    [7] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, doi: 10.7498/aps.62.057101
    [8] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, doi: 10.7498/aps.62.036101
    [9] 陆乃彦, 元冰, 杨恺. 带电多孔二氧化硅纳米颗粒在硫醇/磷脂混合双层膜上的非特异性吸附. 物理学报, doi: 10.7498/aps.62.178701
    [10] 朱晓蕊, 王卫东, 秦广雍, 焦浈. 单锥形纳米孔的制备和离子传导特性研究. 物理学报, doi: 10.7498/aps.62.077802
    [11] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, doi: 10.7498/aps.61.068401
    [12] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究. 物理学报, doi: 10.7498/aps.61.046501
    [13] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.146101
    [14] 王乐, 刘阳, 徐国堂, 李晓艳, 董前民, 黄杰, 梁培. 分子团簇表面吸附敏化ZnO纳米线的第一性原理研究. 物理学报, doi: 10.7498/aps.61.063103
    [15] 唐明春, 肖绍球, 邓天伟, 柏艳英, 官剑, 王秉中. 小型化电谐振人工特异材料研究. 物理学报, doi: 10.7498/aps.59.4715
    [16] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, doi: 10.7498/aps.57.6643
    [17] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文. 官能团对分子器件电输运特性的影响. 物理学报, doi: 10.7498/aps.57.3148
    [18] 陈雷明, 李培刚, 符秀丽, 张海英, L. H. Li, 唐为华. FIB快速加工纳米孔点阵的新方法. 物理学报, doi: 10.7498/aps.54.582
    [19] 许海军, 富笑男, 孙新瑞, 李新建. 硅纳米孔柱阵列的结构和光学特性研究. 物理学报, doi: 10.7498/aps.54.2352
    [20] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, doi: 10.7498/aps.53.2112
计量
  • 文章访问数:  194
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-20

/

返回文章
返回