搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

509 nm 高功率宽调谐外腔面发射激光器

王涛 彭雪芳 贺亮 沈小雨 朱仁江 蒋丽丹 佟存柱 宋晏蓉 张鹏

引用本文:
Citation:

509 nm 高功率宽调谐外腔面发射激光器

王涛, 彭雪芳, 贺亮, 沈小雨, 朱仁江, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏

509 nm high power wide-tuned external cavity surface emitting laser

Wang Tao, Peng Xuefang, He Liang, Shen Xiaoyu, Zhu Renjiang, Jiang Lidan, Tong Cunzhu, Song Yanrong, Zhang Peng
PDF
导出引用
  • 本文报道了一种高功率宽调谐外腔面发射绿光激光器,利用设计的1018 nm半导体增益芯片、折叠镜以及后端镜构成结构紧凑的V型腔,使用长度为10 mm的I类相位匹配LBO非线性频率变换晶体进行腔内倍频,实现了509 nm波长的高功率绿光输出。通过在腔内插入双折射滤波片(Birefringent Filter,BRF),可获得连续调谐的激光波长。当BRF厚度为1 mm时,基频激光和倍频绿光的波长调谐范围分别为47.1 nm和20.1 nm。可调谐绿光的最大输出功率为8.23 W,对应的倍频转换效率为68.2 %,相应的从吸收泵浦光到倍频绿光的光-光转换效率为16.6 %。
    High power widely tunable green lasers have potential applications in many fields such as biomedical, lidar, laser spectroscopy, laser display, underwater wireless optical communication, fine processing of nonferrous metals, and so on. Vertical-external-cavity surface-emitting lasers, also known as semiconductor disk lasers, have the advantages of high power, good beam quality and wide bandwidth of gain medium. In this paper, a gain chip with reverse-growth epitaxy structure and emitting wavelength of 1018 nm is designed. A bandwidth of 74 nm above the reflectivity of greater than 99.1 % in the DBR reflection spectrum is obtained, which lays a solid foundation for the realization of high-power widely tunable output. The laser cavity combines a 1018 nm semiconductor gain chip, a folded mirror, and a plane mirror to construct a compact V-shaped resonant cavity. A class I phase-matched LBO nonlinear crystal with a length of 10 mm is placed at the beam waist of the cavity to realize a highly efficient frequency doubling process to produce 509 nm green laser. To meet the requirement of the polarization during frequency conversion and to tune the oscillating wavelength of the laser, a birefringent filter (BRF) is employed in the laser resonant cavity. When the thickness of the used BRF is 1 mm, the obtained wavelength tuning ranges of the fundamental laser and the frequency doubled green laser are 47.1 nm and 20.1 nm, respectively, showing a good tuning capability of the laser. The laser's performance varies with the different thickness of the BRF. When using a 2 mm BRF, a maximum output power of the frequency-doubled green laser of 8.23 W is achieved during continuous tuning, indicating an ideal compatibility of wide tuning characteristics and a high output power. Meanwhile, its beam quality M2 factors are 1.00 and 1.03 in the x and y directions, respectively, demonstrating a near diffraction-limited excellent beam quality. This green laser also possesses a frequency doubling conversion efficiency of up to 68.2 %, which enables efficient conversion of the fundamental laser into the frequency doubled green laser. The optical-to-optical conversion efficiency from the absorbed pump light to the frequency-doubled green light also reaches 16.6 %. Meanwhile, the spectral linewidths of the green lasers under different thicknesses of BRFs are found that the thicker the BRF, the narrower the laser line widths, which is consistent with the theoretical results.
  • [1]

    Xu Q Y, Chen S W 2004Phys. 33 508(in Chinese) [徐庆扬,陈少武2004物理33 508]

    [2]

    Zhou Y H, Zhang J, Feng A X , Shang D Z, Chen Y, Tang J, Yang H H 2021Chin. J. Lasers 48 0602116(in Chinese) [周远航,张健,冯爱新,尚大智,陈云,唐杰,杨海华] 2021中国激光 48 0602116

    [3]

    Jin X, Zhang L, Zhou Y, Wang L, Chao F F 2019Chin. J. Laser Medicine & Surgery 28308(in Chinese) [金熙,张磊,周颖,王磊,曹芬芬] 2019中国激光医学杂志28 308

    [4]

    Nie W, Kan R F, Yang C G, Chen B, Xu Z Y, Liu W Q 2018Chin. J. Lasers 45 0911001(in Chinese) [ 聂伟, 阚瑞峰, 杨晨光, 陈兵,许振宇,刘文清2018中国激光45 0911001]

    [5]

    Lin H, Wang X M, Lu J J, Li W Z 2010Laser Optoelectron. P. 47 120101(in Chinese) [林宏,王新民,卢金军,李卫中2010激光与光电子学进展47 120101]

    [6]

    Rahimi-Iman A 2016J. Optics-UK 18093003

    [7]

    Guina M, Rantamäki A, Härkönen A 2017J. Phy. D Appl. Phys. 50383001

    [8]

    Mangold M, Wittwer V J, Sieber O D 2012Opt. Express 20 4136

    [9]

    Chang-Hasnain C J. 2000IEEE J. Sel. Top. Quant. 6 978

    [10]

    Li H J, Zhang M, Li F Q 2016Chin. J. Lasers 43 0302003(in Chinese)[李慧娟,张淼,李凤琴2016中国激光43 0302003]

    [11]

    Wu Y, Shen Y, Addamane S, Reno J L, Williams B S 2021Opt. Express 29 34695

    [12]

    Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010Semiconductor Lasers and Laser Dynamics IV. SPIE Brussels, Belgium April 3-0, 2010 p7720247

    [13]

    Borgentun C, Hessenius C, Bengtsson J, Fallahi M, Larsson A 2011IEEE Photonics J. 3946

    [14]

    Nakdali D A, Gaafar M, Shakfa M K, Zhang F, Vaupel M, Fedorova K A, Koch M 2015IEEE Photonic. Tech. L. 27 1128

    [15]

    Broda A, Wójcik-Jedlińska A, Sankowska I, Wasiak M, Wieckowska M, Muszalski J 2017IEEE Photonic. Tech. L. 292215

    [16]

    Qiu X, Wang C, Li J, Li C, Xie X, Wang Y, Wei X 2022IEEE Photonics J.14 1

    [17]

    Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008IEEE J. Quantum Elect.44 216

    [18]

    Lin J P, Helen M. P, David J. S, Craig J. H, Graeme P. A. Malcolm 2012Opt. Express 205219

    [19]

    Hein A, Menzel S, Unger P 2012Appl. Phys. Lett. 101 111109

    [20]

    Chen Y H, Lin W C, Chen H Z, Shy J T, Chui H C 2017IEEE Photonics J. 9 1

    [21]

    Qiu X, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019Chin. J. Lasers 46 0401002(in Chinese) [邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉2019中国激光46 0401002]

    [22]

    Boyd G D, Kleinman D A 1968J. Appl. Phys. 39 3597

    [23]

    Smith A V.2018 Crystal nonlinear optics: with SNLO examples[M]. Albuquerque, NM, USA: AS-Photonics

    [24]

    Smith, A. V. 2003In Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications II. SPIE. September 2003 Vol 4972, pp 50-57

  • [1] 伍亚东, 朱仁江, 晏日, 彭雪芳, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 高转换效率腔内倍频外腔面发射蓝光激光器. 物理学报, doi: 10.7498/aps.73.20231278
    [2] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, doi: 10.7498/aps.73.20231923
    [3] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, doi: 10.7498/aps.71.20220817
    [4] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器. 物理学报, doi: 10.7498/aps.71.20211539
    [5] 王武越, Yu Yu, 李云飞, 王汞, 李凯, 王志勇, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器(光电技术与应用). 物理学报, doi: 10.7498/aps.70.20211539
    [6] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, doi: 10.7498/aps.70.20210957
    [7] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, doi: 10.7498/aps.70.20201461
    [8] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, doi: 10.7498/aps.68.20182261
    [9] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, doi: 10.7498/aps.66.094204
    [10] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究. 物理学报, doi: 10.7498/aps.64.154204
    [11] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, doi: 10.7498/aps.64.164205
    [12] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换. 物理学报, doi: 10.7498/aps.61.234206
    [13] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, doi: 10.7498/aps.61.194703
    [14] 马宝田, 吴逢铁, 马亮. 非稳腔主动式直接获取纳秒近似无衍射贝塞尔绿光. 物理学报, doi: 10.7498/aps.59.6213
    [15] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, doi: 10.7498/aps.59.365
    [16] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, doi: 10.7498/aps.58.3193
    [17] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, doi: 10.7498/aps.58.4647
    [18] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, doi: 10.7498/aps.58.3903
    [19] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, doi: 10.7498/aps.57.194
    [20] 董新永, 赵春柳, 关柏鸥, 谭华耀, 袁树忠, 开桂云, 董孝义. 可调谐光纤环形腔激光器输出特性的理论与实验研究. 物理学报, doi: 10.7498/aps.51.2750
计量
  • 文章访问数:  131
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-09

/

返回文章
返回