搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面缺陷态密度与衬底电阻率取值对硅异质结光伏电池性能的影响

周骏 邸明东 孙铁囤 孙永堂 汪昊

引用本文:
Citation:

界面缺陷态密度与衬底电阻率取值对硅异质结光伏电池性能的影响

周骏, 邸明东, 孙铁囤, 孙永堂, 汪昊

Effects of substrate resistivity and interface defect density on performance of solar cell with silicon heterojunctions

Zhou Jun, Di Ming-Dong, Sun Tie-Tun, Sun Yong-Tang, Wang Hao
PDF
导出引用
  • 在异质结前界面缺陷态密度Dit1和异质结背界面缺陷态密度Dit2均取不同值时, 对p型单晶硅(c-Si(p))为衬底的硅异质结太阳电池的衬底电阻率ρ与电池性能的关系进行了数值研究.结果表明:衬底电阻率的最优值ρop取决于前界面缺陷态密度Dit1,且ρop随着Dit1的增大而增大;当ρ>ρop时, 背界面缺陷态密度Dit2对衬底电阻率的可取值范围具有较大影响,Dit2越大衬底电阻率的可取值范围越小.
    For silicon heterojunction solar cell with p-type a-Si:H back surface field, the effects of substrate resistivity on the performance of solar cell with different defect densities on the front and the rear surfaces of the p-type c-Si wafer are investigated numerically by computer simulation. The results indicate that the optimized resistivity of the substrate (ρop) is related to the interface defect density on the front surface of c-Si wafer (Dit1), and ρopincreases with the increase of Dit1.The value scale of resistivity of substrate is influenced greatly by the interface defect density on the rear surface of c-Si wafer (Dit2) for ρ>ρop, and the larger the value of Dit2, the smaller will the range of acceptable ρ value be.
    • 基金项目: 国家自然科学基金(批准号:60977048)、浙江省"钱江人才计划"(批准号:2007R10015)、宁波市重点实验室基金(批准号:2007A22006)和宁波大学王宽成幸福基金资助的课题.
    [1]

    Jagannathan B, Anderson W A 1996 Sol. Energy Mater. Sol. Cells 44 165

    [2]

    Tardon S, Rosch M, Bruggemann R, Unold T, Bauer G H 2004 J. Non-Cryst. Solids 338—340 444

    [3]

    Jagannathan B, Anderson W A, Coleman J 1997 Sol. Energy Mater. Sol. Cells 46 289

    [4]

    Gudovskikh A S, Kleider J P, Damon-Lacoste J, Cabarrocas P R I, Veschetti Y, Muller J C, Ribeyron P J, Rolland E 2006 Thin Solid Films 511—512 385

    [5]

    Ok Y W, Seong T Y, Kim D W, Kim S K, Lee J C, Yoon K H, Song J S 2007 Sol. Energy Mater. Sol. Cells 91 1366

    [6]

    Zhao L, Li H L, Zhou C L, Diao H W, Wang W J 2009 Solar Energy 83 812

    [7]

    Page M R, Iwaniczko E, Xu Y, Wang Q, Yan Y, Roybal L, Branz H M, Wang T H 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Hawaii: IEEE) pp1485—1488

    [8]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Acta Phys. Sin. 57 3213 (in Chinese) [赵 雷、周春兰、李海玲、刁宏伟、王文静 2008 物理学报 57 3212]

    [9]

    von Maydell K, Windgassen H, Nositschka W A, Rau U, Rostan P J, Henze J, Schmidt J, Scherff M, Fahrner W, Borchert D, Tardon S, Brüggemann R, Stiebig H, Schmidt M 2005 Proceedings of the 20th European Photovoltaic Solar Energy Conference (Barcelona: WIP-Renewable Energies) pp822—825

    [10]

    Conrad E, von Maydell K, Angermann H, Schubert C, Schmidt M 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Berlin:IEEE) pp1263—1266

    [11]

    Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergmann R B, Werner J H 2000 J. Appl. Phys. 87 2639

    [12]

    Froitzheim A, Brendel K, Elstner L, Fuhs W, Kliefoth K, Schmidt M 2002 J. Non-Cryst. Solids 299—302 663

    [13]

    Gudovskikh A S, Kleider J P, Stangl R, Schmidt M, Fuhs W 2004 Proceedings of 19th European Photovoltaic Solar Energy Conference (Paris: WIP-Renewable Energies) pp697—700

    [14]

    Stangl R, Froitzheim A, Schmidt M, Fuhs W 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (Osaka:IEEE) pp1005—1008

    [15]

    Froitzheim A, Stangl R, Elstner L, Schmidt M, Fuhs W 2002 Conference Record of the 29th IEEE Photovoltaic Specialists Conference (New Orleans:IEEE) pp1238—1241

    [16]

    Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123

    [17]

    Hernández-Como N, Morales-Acevedo A 2008 Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (Mexico City:IEEE) pp449—454

    [18]

    Green M A 1987 Solar Cells: Operating Principles, Technology and System Applications (Englewood Cliffs: Prentice-Hall) p54

    [19]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [20]

    Yang W J, Ma Z Q, Tang X, Feng C B, Zhao W G, Shi P P 2008 Solar Energy 82 106

    [21]

    De Wolfa S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104

  • [1]

    Jagannathan B, Anderson W A 1996 Sol. Energy Mater. Sol. Cells 44 165

    [2]

    Tardon S, Rosch M, Bruggemann R, Unold T, Bauer G H 2004 J. Non-Cryst. Solids 338—340 444

    [3]

    Jagannathan B, Anderson W A, Coleman J 1997 Sol. Energy Mater. Sol. Cells 46 289

    [4]

    Gudovskikh A S, Kleider J P, Damon-Lacoste J, Cabarrocas P R I, Veschetti Y, Muller J C, Ribeyron P J, Rolland E 2006 Thin Solid Films 511—512 385

    [5]

    Ok Y W, Seong T Y, Kim D W, Kim S K, Lee J C, Yoon K H, Song J S 2007 Sol. Energy Mater. Sol. Cells 91 1366

    [6]

    Zhao L, Li H L, Zhou C L, Diao H W, Wang W J 2009 Solar Energy 83 812

    [7]

    Page M R, Iwaniczko E, Xu Y, Wang Q, Yan Y, Roybal L, Branz H M, Wang T H 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Hawaii: IEEE) pp1485—1488

    [8]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Acta Phys. Sin. 57 3213 (in Chinese) [赵 雷、周春兰、李海玲、刁宏伟、王文静 2008 物理学报 57 3212]

    [9]

    von Maydell K, Windgassen H, Nositschka W A, Rau U, Rostan P J, Henze J, Schmidt J, Scherff M, Fahrner W, Borchert D, Tardon S, Brüggemann R, Stiebig H, Schmidt M 2005 Proceedings of the 20th European Photovoltaic Solar Energy Conference (Barcelona: WIP-Renewable Energies) pp822—825

    [10]

    Conrad E, von Maydell K, Angermann H, Schubert C, Schmidt M 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Berlin:IEEE) pp1263—1266

    [11]

    Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergmann R B, Werner J H 2000 J. Appl. Phys. 87 2639

    [12]

    Froitzheim A, Brendel K, Elstner L, Fuhs W, Kliefoth K, Schmidt M 2002 J. Non-Cryst. Solids 299—302 663

    [13]

    Gudovskikh A S, Kleider J P, Stangl R, Schmidt M, Fuhs W 2004 Proceedings of 19th European Photovoltaic Solar Energy Conference (Paris: WIP-Renewable Energies) pp697—700

    [14]

    Stangl R, Froitzheim A, Schmidt M, Fuhs W 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (Osaka:IEEE) pp1005—1008

    [15]

    Froitzheim A, Stangl R, Elstner L, Schmidt M, Fuhs W 2002 Conference Record of the 29th IEEE Photovoltaic Specialists Conference (New Orleans:IEEE) pp1238—1241

    [16]

    Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123

    [17]

    Hernández-Como N, Morales-Acevedo A 2008 Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (Mexico City:IEEE) pp449—454

    [18]

    Green M A 1987 Solar Cells: Operating Principles, Technology and System Applications (Englewood Cliffs: Prentice-Hall) p54

    [19]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [20]

    Yang W J, Ma Z Q, Tang X, Feng C B, Zhao W G, Shi P P 2008 Solar Energy 82 106

    [21]

    De Wolfa S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104

  • [1] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹. 钙钛矿/硅异质结叠层太阳电池: 光学模拟的研究进展. 物理学报, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [2] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟. 物理学报, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [3] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计. 物理学报, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [4] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [5] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [6] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [8] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究. 物理学报, 2013, 62(5): 058801. doi: 10.7498/aps.62.058801
    [9] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [10] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究. 物理学报, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [11] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究. 物理学报, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [12] 钟春良, 耿魁伟, 姚若河. a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象. 物理学报, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [13] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [14] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] 韩晓艳, 侯国付, 李贵君, 张晓丹, 袁育杰, 张德坤, 陈新亮, 魏长春, 孙 健, 耿新华. 低速p/i界面缓冲层对高速沉积微晶硅太阳电池性能的影响. 物理学报, 2008, 57(8): 5284-5289. doi: 10.7498/aps.57.5284
    [16] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 曾湘波, 郝会颖, 孔光临. p型纳米硅与a-Si:H不锈钢底衬nip太阳电池. 物理学报, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [18] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [19] 彭英才, 徐刚毅, 何宇亮, 刘 明, 李月霞. (n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究. 物理学报, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
    [20] 夏义本, 安其霖, 居建华, 史伟民, 王鸿. α-C:H薄膜及其在硅太阳电池上作增透膜的研究. 物理学报, 1993, 42(1): 46-50. doi: 10.7498/aps.42.46
计量
  • 文章访问数:  8659
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-25
  • 修回日期:  2010-05-04
  • 刊出日期:  2010-06-05

/

返回文章
返回