搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维双组分玻色-爱因斯坦凝聚体系的量子隧穿特性

李高清 陈海军 薛具奎

一维双组分玻色-爱因斯坦凝聚体系的量子隧穿特性

李高清, 陈海军, 薛具奎
PDF
导出引用
导出核心图
  • 利用双模近似方法研究了一维双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensates,BECs)的量子隧穿特性.从描述三维双组分BECs系统的Gross-Pitaevskii方程(GPE)出发,得到了描述一维体系的GP方程.把体系波函数写成原子数和相位指数的乘积,得到描述体系隧穿特性的费曼方程.数值求解费曼方程,研究了原子之间相互作用(双组分BECs体系原子之间的相互作用包括组分内部原子之间的相互作用和不同组分原子之间的相互作用)对隧穿特性的影响.结果显示,当原子之间的相互作用较弱时,
    [1]

    [1]Josephson B D 1962 Phys. Lett. 1 251

    [2]

    [2]Xiong B, Liu X X, arXiv:cond-mat/0703327. Xiong B, Zhang W P, Liu W M, arXiv:cond-mat/0703160.

    [3]

    [3]Anderson B P, Kasevich M A 1998 Science 282 1686

    [4]

    [4]Anker T, Albiez M, Gati R, Hunsmann S, Eiermann B, Trombettoni A, Oberthaler M K 2005 Phys. Rev. Lett. 94 020403

    [5]

    [5]Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [6]

    [6]Pedri P, Pitaevskii L, Stringari S, Fort C, Burger S, Cataliotti F S, Maddaloni P, Minardi F, Inguscio M 2001 Phys. Rev. Lett. 87 220401

    [7]

    [7]Adhikari S K 2003 Eur. Phys. J. D 25 161

    [8]

    [8]Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L, Tosi M P 2001 Phys. Rev. Lett. 86 4447

    [9]

    [9] Kraer M, Pitaevskii L, Stringari S 2002 Phys. Rev. Lett. 88 180404

    [10]

    [10]Adhikari S K 2005 Phys. Rev. A 72 013619

    [11]

    [11]Wang G F, Liu H 2008 Acta. Phys. Sin. 57 0667 (in Chinese)[王冠芳、刘红 2008 物理学报 57 0667]

    [12]

    [12]Liu Z Z, Yang Z A 2007 Acta. Phys. Sin. 56 1245 (in Chinese)[刘泽专、杨志安 2007 物理学报 56 1245]

    [13]

    [13]Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta. Phys. Sin. 55 5623 (in Chinese)[马云、傅立斌、杨志安、刘杰 2006 物理学报 55 5623]

    [14]

    [14]Fang Y C, Yang Z A 2008 Acta. Phys. Sin. 57 7438 (in Chinese)[房永翠、杨志安 2008 物理学报 57 7438]

    [15]

    [15]Yan D, Song L J, Chen D W 2009 Acta. Phys. Sin. 58 3679 (in Chinese)[严冬、宋立军、陈殿伟 2009 物理学报 58 3679]

    [16]

    [16]Chen H J, Xue J K 2008 Acta. Phys. Sin. 57 3962 (in Chinese)[陈海军、薛具奎 2008 物理学报 57 3962]

    [17]

    [17]Li H M 2007 Chin. Phys. 16 3187

    [18]

    [18]Ren J R, Guo H 2009 Chin. Phys. B 18 3379

    [19]

    [19]Xiong H W, Liu S J, Zhan M S 2006 Phys. Rev. 73 224505

    [20]

    [20]Wen L H, Li J H 2007 Phys. Lett. A 369 307

    [21]

    [21]Kuang L M, Ouyang Z W 2000 Phys. Rev. A 61 023604

    [22]

    [22]Kasamatsu K, Yasui Y, Tsubota M 2001 Phys. Rev. A 64 053605

    [23]

    [23]Salmond G L, Holmes C A, Milburn G J 2002 Phys. Rev. A 65 033623

    [24]

    [24]Lee C, Hai W, Luo X, Shi L, Gao K 2003 Phys. Rev. A 68 053614

    [25]

    [25]Li F, Shu W X, Luo H L, Ren Z Z 2007 Chin. Phys. 16 650

    [26]

    [26]Xiong B, Liu X X 2007 Chin. Phys. B 16 2578

    [27]

    [27]Zhou L, Kong L B, Zhou M S 2008 Chin. Phys. B 17 1601

    [28]

    [28]Fang J S 2008 Chin. Phys. B 17 3996

    [29]

    [29]Fang Y C, Yang Z A, Yang L Y 2008 Acta. Phys. Sin. 57 661 (in Chinese)[房永翠、杨志安、杨丽云 2008 物理学报 57 661]

    [30]

    [30]Wang G F, Fu L B, Zhao H, Liu J 2005 Acta. Phys. Sin. 54 5003 (in Chinese)[王冠芳、傅立斌、赵鸿、刘杰 2005 物理学报 54 5003]

    [31]

    [31]Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950

    [32]

    [32]Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

  • [1]

    [1]Josephson B D 1962 Phys. Lett. 1 251

    [2]

    [2]Xiong B, Liu X X, arXiv:cond-mat/0703327. Xiong B, Zhang W P, Liu W M, arXiv:cond-mat/0703160.

    [3]

    [3]Anderson B P, Kasevich M A 1998 Science 282 1686

    [4]

    [4]Anker T, Albiez M, Gati R, Hunsmann S, Eiermann B, Trombettoni A, Oberthaler M K 2005 Phys. Rev. Lett. 94 020403

    [5]

    [5]Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [6]

    [6]Pedri P, Pitaevskii L, Stringari S, Fort C, Burger S, Cataliotti F S, Maddaloni P, Minardi F, Inguscio M 2001 Phys. Rev. Lett. 87 220401

    [7]

    [7]Adhikari S K 2003 Eur. Phys. J. D 25 161

    [8]

    [8]Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L, Tosi M P 2001 Phys. Rev. Lett. 86 4447

    [9]

    [9] Kraer M, Pitaevskii L, Stringari S 2002 Phys. Rev. Lett. 88 180404

    [10]

    [10]Adhikari S K 2005 Phys. Rev. A 72 013619

    [11]

    [11]Wang G F, Liu H 2008 Acta. Phys. Sin. 57 0667 (in Chinese)[王冠芳、刘红 2008 物理学报 57 0667]

    [12]

    [12]Liu Z Z, Yang Z A 2007 Acta. Phys. Sin. 56 1245 (in Chinese)[刘泽专、杨志安 2007 物理学报 56 1245]

    [13]

    [13]Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta. Phys. Sin. 55 5623 (in Chinese)[马云、傅立斌、杨志安、刘杰 2006 物理学报 55 5623]

    [14]

    [14]Fang Y C, Yang Z A 2008 Acta. Phys. Sin. 57 7438 (in Chinese)[房永翠、杨志安 2008 物理学报 57 7438]

    [15]

    [15]Yan D, Song L J, Chen D W 2009 Acta. Phys. Sin. 58 3679 (in Chinese)[严冬、宋立军、陈殿伟 2009 物理学报 58 3679]

    [16]

    [16]Chen H J, Xue J K 2008 Acta. Phys. Sin. 57 3962 (in Chinese)[陈海军、薛具奎 2008 物理学报 57 3962]

    [17]

    [17]Li H M 2007 Chin. Phys. 16 3187

    [18]

    [18]Ren J R, Guo H 2009 Chin. Phys. B 18 3379

    [19]

    [19]Xiong H W, Liu S J, Zhan M S 2006 Phys. Rev. 73 224505

    [20]

    [20]Wen L H, Li J H 2007 Phys. Lett. A 369 307

    [21]

    [21]Kuang L M, Ouyang Z W 2000 Phys. Rev. A 61 023604

    [22]

    [22]Kasamatsu K, Yasui Y, Tsubota M 2001 Phys. Rev. A 64 053605

    [23]

    [23]Salmond G L, Holmes C A, Milburn G J 2002 Phys. Rev. A 65 033623

    [24]

    [24]Lee C, Hai W, Luo X, Shi L, Gao K 2003 Phys. Rev. A 68 053614

    [25]

    [25]Li F, Shu W X, Luo H L, Ren Z Z 2007 Chin. Phys. 16 650

    [26]

    [26]Xiong B, Liu X X 2007 Chin. Phys. B 16 2578

    [27]

    [27]Zhou L, Kong L B, Zhou M S 2008 Chin. Phys. B 17 1601

    [28]

    [28]Fang J S 2008 Chin. Phys. B 17 3996

    [29]

    [29]Fang Y C, Yang Z A, Yang L Y 2008 Acta. Phys. Sin. 57 661 (in Chinese)[房永翠、杨志安、杨丽云 2008 物理学报 57 661]

    [30]

    [30]Wang G F, Fu L B, Zhao H, Liu J 2005 Acta. Phys. Sin. 54 5003 (in Chinese)[王冠芳、傅立斌、赵鸿、刘杰 2005 物理学报 54 5003]

    [31]

    [31]Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950

    [32]

    [32]Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4834
  • PDF下载量:  1203
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-19
  • 修回日期:  2009-08-26
  • 刊出日期:  2010-03-15

一维双组分玻色-爱因斯坦凝聚体系的量子隧穿特性

  • 1. (1)陇东学院物理与电子工程学院,庆阳 745000; (2)西北师范大学物理与电子工程学院,兰州 730070

摘要: 利用双模近似方法研究了一维双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensates,BECs)的量子隧穿特性.从描述三维双组分BECs系统的Gross-Pitaevskii方程(GPE)出发,得到了描述一维体系的GP方程.把体系波函数写成原子数和相位指数的乘积,得到描述体系隧穿特性的费曼方程.数值求解费曼方程,研究了原子之间相互作用(双组分BECs体系原子之间的相互作用包括组分内部原子之间的相互作用和不同组分原子之间的相互作用)对隧穿特性的影响.结果显示,当原子之间的相互作用较弱时,

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回