搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋梯状化合物Sr14Cu24O41+δ的Raman散射谱的研究

程莉 熊锐 石兢

自旋梯状化合物Sr14Cu24O41+δ的Raman散射谱的研究

程莉, 熊锐, 石兢
PDF
导出引用
导出核心图
  • 利用常规的固相反应法制备了单相多晶样品Sr14Cu24O41+δ,并在不同的温度下进行退火,改变样品中的氧含量.能量色散谱(EDS)显示样品中的氧含量随退火温度的增加而减少.磁化率温度特性的研究显示,600 ℃下退火的样品中的二聚体数最多.Raman光谱的研究显示,伴随着样品中氧含量的偏离,由无序或低能磁激发诱导的一些Raman振动模出现规律性的变化.进一步的分析证实这种Raman光谱的变化行为与晶体结构中由于氧含量的不同
    • 基金项目: 国家自然科学基金(批准号:10674105)资助的课题.
    [1]

    Uehara M, Nagata T, Akimitsu J, Takahashi H, Mori N, Kinoshi K 1996 J. Phys. Soc. Jpn. 65 2764

    [2]

    Ohta T, Izumi F, Onoda M, Isobe M, Takayama-Muromachi E, Hewat A W 1997 J. Phys. Soc. Jpn. 66 3107

    [3]

    F, Yu Z X, Tang Z, Shi J 2008 Acta Phys. Sin. 57 4334(in Chinese)[汪丽莉、熊 锐、魏 伟、胡 妮、林 颖、朱本鹏、汤五丰、余祖兴、汤 征、石 兢 2008 物理学报 57 4334]

    [4]

    Abbamonte P, Blumberg G, Rusydl A, Gozar A, Evans P G, Siegrist T, Venema L, Eisaki H, Isaacs E D, Sawatzky G A 2004 Nature 431 1078

    [5]

    Kato M, Shiota K, Koike Y 1996 Physica C 258 284

    [6]

    Nücker N, Merz M, Kuntscher C A, Gerhold S, Schuppler S, Neudert R, Golden M S, Fink J, Schild D, Stadler S, Chakarian V, Freeland J, Idzerda Y U, Conder K, Uehara M, Nagata T, Goto J, Akimitsu J, Motoyama N, Eisaki H, Uchida S, Ammerahl U, Revcolevschi A 2000 Phys. Rev. B 62 14384

    [7]

    Zhang F C, Rice T M 1988 Phys. Rev. B37 3759

    [8]

    Cartre S A, Batlogg B, Cava R J, Krajewski J J, Peck J W F, Rice T M 1996 Phys. Rev. Lett. 77 1378

    [9]

    Eccleston R S, Uehara M, Akimitsu J, Eisaki H, Motoyama N, Uchida S 1998 Phys. Rev. Lett. 81 1702

    [10]

    Braden M, Etrillard J, Gukasov A, Ammerahl U, Revcolevschi A 2004 Phys. Rev. B69 214426

    [11]

    Smaalen S V 2003 Phys. Rev. B67 026101

    [12]

    Gotoh Y, Yamaguchi I, Eisaki H, Nagata T, Akimitsu J 2006 Physica C445—448 107

    [13]

    Isobe M, Onoda M, Ohta T, Izumi F, Kimoto K, Takayama-Muromachi E, Hewat A W, Ohoyama K 2000 Phys. Rev. B62 11667

    [14]

    Wang L L, Xiong R, Wei W, Hu N, Lin Y, Zhu B P, Tang W

    [15]

    Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S094 (in Chinese) [陆善平、董文超、李殿中、李依依 2009 物理学报 58 S094]

    [16]

    Popovic ' Z V, Konstantinovic ' M J, Ivanov V A, Khuong O P, Gajic ' R, Vietkin A, Moshchalkov V V 2000 Phys. Rev. B 62 4963

    [17]

    Osada M, Kakihana M, Nagai I, Noji T, Adachi T, Koike Y, Bckstrm J, Kll M, Brjesson L 2000 Physica C338 161

    [18]

    Abrashe M V, Thomsen C, Surtchev M 1997 Physica C 280 297

    [19]

    Hu N, Xiong R, Wei W, Wang Z Y, Wang L L, Yu Z X, Tang W F, Shi J 2008 Acta Phys. Sin. 57 5267 (in Chinese) [胡 妮、熊 锐、魏 伟、王自昱、汪丽莉、余祖兴、汤五丰、 石 兢 2008 物理学报 57 5267]

    [20]

    Abrashev M V, Litvinchuk A P, Thomsen C 1997 Phys. Rev. B 55 9136

    [21]

    Heyen E T, Liu R, Thomsen C, Kremer R, Cardona M, Karpinski J, Kaldis E, Rusiecki S 1990 Phys. Rev. B41 11058

    [22]

    Kliche G, Popovic ' Z V 1990 Phys. Rev. B42 10060

    [23]

    Tajima S, Ido T, Ishibashi S, Itoh T, Eisaki H, Mizuo Y, Arima T, Takagi H, Uchida S 1991 Phys. Rev. B43 10496

    [24]

    Popovic ' Z V, Devic ' S D, Popov V N, Dhalenne G, Revcolevschi A 1995 Phys. Rev. B 52 4185

    [25]

    Hiroi Z, Amelinckx S, van Tendeloo G, Kobayashi N 1996 Phys. Rev. B54 15849

  • [1]

    Uehara M, Nagata T, Akimitsu J, Takahashi H, Mori N, Kinoshi K 1996 J. Phys. Soc. Jpn. 65 2764

    [2]

    Ohta T, Izumi F, Onoda M, Isobe M, Takayama-Muromachi E, Hewat A W 1997 J. Phys. Soc. Jpn. 66 3107

    [3]

    F, Yu Z X, Tang Z, Shi J 2008 Acta Phys. Sin. 57 4334(in Chinese)[汪丽莉、熊 锐、魏 伟、胡 妮、林 颖、朱本鹏、汤五丰、余祖兴、汤 征、石 兢 2008 物理学报 57 4334]

    [4]

    Abbamonte P, Blumberg G, Rusydl A, Gozar A, Evans P G, Siegrist T, Venema L, Eisaki H, Isaacs E D, Sawatzky G A 2004 Nature 431 1078

    [5]

    Kato M, Shiota K, Koike Y 1996 Physica C 258 284

    [6]

    Nücker N, Merz M, Kuntscher C A, Gerhold S, Schuppler S, Neudert R, Golden M S, Fink J, Schild D, Stadler S, Chakarian V, Freeland J, Idzerda Y U, Conder K, Uehara M, Nagata T, Goto J, Akimitsu J, Motoyama N, Eisaki H, Uchida S, Ammerahl U, Revcolevschi A 2000 Phys. Rev. B 62 14384

    [7]

    Zhang F C, Rice T M 1988 Phys. Rev. B37 3759

    [8]

    Cartre S A, Batlogg B, Cava R J, Krajewski J J, Peck J W F, Rice T M 1996 Phys. Rev. Lett. 77 1378

    [9]

    Eccleston R S, Uehara M, Akimitsu J, Eisaki H, Motoyama N, Uchida S 1998 Phys. Rev. Lett. 81 1702

    [10]

    Braden M, Etrillard J, Gukasov A, Ammerahl U, Revcolevschi A 2004 Phys. Rev. B69 214426

    [11]

    Smaalen S V 2003 Phys. Rev. B67 026101

    [12]

    Gotoh Y, Yamaguchi I, Eisaki H, Nagata T, Akimitsu J 2006 Physica C445—448 107

    [13]

    Isobe M, Onoda M, Ohta T, Izumi F, Kimoto K, Takayama-Muromachi E, Hewat A W, Ohoyama K 2000 Phys. Rev. B62 11667

    [14]

    Wang L L, Xiong R, Wei W, Hu N, Lin Y, Zhu B P, Tang W

    [15]

    Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S094 (in Chinese) [陆善平、董文超、李殿中、李依依 2009 物理学报 58 S094]

    [16]

    Popovic ' Z V, Konstantinovic ' M J, Ivanov V A, Khuong O P, Gajic ' R, Vietkin A, Moshchalkov V V 2000 Phys. Rev. B 62 4963

    [17]

    Osada M, Kakihana M, Nagai I, Noji T, Adachi T, Koike Y, Bckstrm J, Kll M, Brjesson L 2000 Physica C338 161

    [18]

    Abrashe M V, Thomsen C, Surtchev M 1997 Physica C 280 297

    [19]

    Hu N, Xiong R, Wei W, Wang Z Y, Wang L L, Yu Z X, Tang W F, Shi J 2008 Acta Phys. Sin. 57 5267 (in Chinese) [胡 妮、熊 锐、魏 伟、王自昱、汪丽莉、余祖兴、汤五丰、 石 兢 2008 物理学报 57 5267]

    [20]

    Abrashev M V, Litvinchuk A P, Thomsen C 1997 Phys. Rev. B 55 9136

    [21]

    Heyen E T, Liu R, Thomsen C, Kremer R, Cardona M, Karpinski J, Kaldis E, Rusiecki S 1990 Phys. Rev. B41 11058

    [22]

    Kliche G, Popovic ' Z V 1990 Phys. Rev. B42 10060

    [23]

    Tajima S, Ido T, Ishibashi S, Itoh T, Eisaki H, Mizuo Y, Arima T, Takagi H, Uchida S 1991 Phys. Rev. B43 10496

    [24]

    Popovic ' Z V, Devic ' S D, Popov V N, Dhalenne G, Revcolevschi A 1995 Phys. Rev. B 52 4185

    [25]

    Hiroi Z, Amelinckx S, van Tendeloo G, Kobayashi N 1996 Phys. Rev. B54 15849

  • [1] 汪丽莉, 蒲十周, 胡妮, 张悦, 刘雍, 魏伟, 程莉, 熊锐, 石兢. 磁性和非磁性元素掺杂的自旋梯状化合物Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co)的结构和电输运性质. 物理学报, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [2] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究. 物理学报, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [3] 蒋最敏, 熊 飞, 张 辉, 李洪山, 张鹏翔. 退火氧压对YBa2Cu3O7-x薄膜中的激光感生热电电压效应的影响. 物理学报, 2008, 57(8): 5237-5243. doi: 10.7498/aps.57.5237
    [4] 常方高, 宋桂林, 房 坤, 王照奎. 氧含量对BiFeOδ多晶陶瓷介电特性的影响. 物理学报, 2007, 56(10): 6068-6074. doi: 10.7498/aps.56.6068
    [5] 徐叙瑢, 宋淑芳, 陈维德, 许振嘉. 掺Er/Er+O的GaN薄膜光学性质的研究. 物理学报, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [6] 李领伟, 曹世勋, 黎文峰, 刘 芬, 池长昀, 敬 超, 张金仓. 氧含量对Fe掺杂YBCO体系中载流子局域化与离子团簇效应的影响. 物理学报, 2005, 54(8): 3839-3844. doi: 10.7498/aps.54.3839
    [7] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射. 物理学报, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [8] 倪培根, 程丙英, 张道中, 刘晓东. 可变晶格常数乙醇-二氧化硅胶质光子晶体中的Raman散射. 物理学报, 2004, 53(9): 3059-3064. doi: 10.7498/aps.53.3059
    [9] 石建中, 邵庆益, 朱开贵. 镶嵌在SiO2薄膜中InAs纳米颗粒的Raman散射. 物理学报, 2000, 49(11): 2304-2306. doi: 10.7498/aps.49.2304
    [10] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [11] 汪丽莉, 熊 锐, 魏 伟, 胡 妮, 林 颖, 朱本鹏, 汤五丰, 余祖兴, 汤 征, 石 兢. 缺氧条件下准一维自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ的磁化率特性研究. 物理学报, 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [12] 王占国, 梁建军, 王永谦, 陈维德, 常 勇. 掺饵氢化非晶氧化硅1.54μm发光性质的研究. 物理学报, 2000, 49(7): 1386-1389. doi: 10.7498/aps.49.1386
    [13] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振. 物理学报, 2012, 61(3): 037802. doi: 10.7498/aps.61.037802
    [14] 柴璋, 沈志功, 张泮霖, 阮景辉, 牛世文, 成之绪, 程玉芬, 曾祥欣, 勾成, 王军, 郭立平, 林军, 俞安孙. YBa2Cu3O6+δ的高频模及其随氧含量δ的变化. 物理学报, 1993, 42(7): 1121-1126. doi: 10.7498/aps.42.1121
    [15] 毛志强, 张宏光, 田明亮, 喻伟杰, 谭舜, 王瑜, 许存义, 张裕恒. 掺Ba的Bi-Sr-Cu-O单晶Raman散射研究. 物理学报, 1994, 43(2): 303-307. doi: 10.7498/aps.43.303
    [16] 桂 宙, 张国春, 陈祖耀, 阮可青, 李世燕, 曹烈兆, 余 旻, 陈仙辉. 不同氧含量Bi2Sr2CaCu2O8+δ单晶电阻率的各向异性. 物理学报, 1999, 48(2): 363-369. doi: 10.7498/aps.48.363
    [17] 任孟眉, 江伟林, 朱沛然. 用卢瑟福背散射和弹性背散射分析高Tc超导薄膜中的元素组份及氧含量. 物理学报, 1994, 43(2): 340-344. doi: 10.7498/aps.43.340
    [18] 熊光成, 刘 鹏, 叶红娟, 李 标, 李志锋, 王瑞兰, 李宏成. PrBa2Cu3O6+x(x=1,0.3)中Pr价态随氧含量的变化. 物理学报, 1998, 47(8): 1361-1368. doi: 10.7498/aps.47.1361
    [19] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响 . 物理学报, 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [20] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2870
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-22
  • 修回日期:  2009-11-24
  • 刊出日期:  2010-07-15

自旋梯状化合物Sr14Cu24O41+δ的Raman散射谱的研究

  • 1. (1)武汉大学物理科学与技术学院,教育部声光材料与器件重点实验室,武汉 430072; (2)武汉大学物理科学与技术学院,教育部声光材料与器件重点实验室,武汉 430072; 中国科学院国际材料物理中心,沈阳 110016
    基金项目: 

    国家自然科学基金(批准号:10674105)资助的课题.

摘要: 利用常规的固相反应法制备了单相多晶样品Sr14Cu24O41+δ,并在不同的温度下进行退火,改变样品中的氧含量.能量色散谱(EDS)显示样品中的氧含量随退火温度的增加而减少.磁化率温度特性的研究显示,600 ℃下退火的样品中的二聚体数最多.Raman光谱的研究显示,伴随着样品中氧含量的偏离,由无序或低能磁激发诱导的一些Raman振动模出现规律性的变化.进一步的分析证实这种Raman光谱的变化行为与晶体结构中由于氧含量的不同

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回