搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄GaMnAs外延膜空穴浓度和应变弛豫研究

苏平 龚敏 马瑶 高博 石瑞英 陈昶 史同飞 曹先存 孟祥豪 罗代升

引用本文:
Citation:

超薄GaMnAs外延膜空穴浓度和应变弛豫研究

苏平, 龚敏, 马瑶, 高博, 石瑞英, 陈昶, 史同飞, 曹先存, 孟祥豪, 罗代升

The hole concentration and strain relaxation of ultrathin GaMnAs film

Chen Chang, Luo Dai-Sheng, Gong Min, Ma Yao, Gao Bo, Shi Rui-Ying, Su Ping, Meng Xiang-Hao, Shi Tong-Fei, Cao Xian-Cun
PDF
导出引用
  • 稀磁GaMnAs外延膜中的Mn含量会影响外延膜的空穴浓度和应变弛豫.Raman散射研究表明,Mn含量为3%的超薄GaMnAs样品的空穴浓度大于2%样品,4%样品的空穴浓度小于3%样品.应变弛豫理论和高分辨X射线衍射研究表明,Mn含量为2%和3%的超薄GaMnAs外延层分别处于准共格或低弛豫状态,Mn含量为4%的GaMnAs外延层的弛豫度明显大于3%样品的弛豫度.我们认为,准共格或低弛豫度状态对空穴浓度随Mn含量的变化趋势几乎没有影响,较大弛豫度的应变状态将导致样品外延层产生较多缺陷,影响能带结构和能级,引起空穴浓度异常减小.
    The hole concentration and strain relaxation degree in the diluted magnetic epitaxial film of GaMnAs are affected by the Mn concentration. The result from Raman scattering spectrum experiment has shown that the hole concentration in ultra-thin GaMnAs sample with Mn concentration of 3% is greater than that in sample with Mn concentration of 2% , while the hole concentration in sample with Mn concentration of 4% is less than that in sample with Mn concentration of 3%. Based on the theory of strain relaxation and investigation by HRXRD, it was indicated the samples with Mn concentration of 2% and 3% are in quasi-coherence or with low relaxation degree, respectively. On the other hand, the sample with Mn concentration of 4% obviously has a greater relaxation degree than that with 3% concentration. Therefore, it is suspected that the status of quasi-coherence or low relaxation degree hardly affects the hole concentration with the change of the Mn concentration. However, the strain relaxation status of large relaxation degree results in more defects in the epitaxial layer which affects the energy band and level thus decreases the hole concentration dramatically.
    • 基金项目: 国家自然科学基金(批准号:60676052)资助的课题.
    [1]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Lye Y 1996 Appl. Phys. Lett. 69 363

    [2]

    Luo X D, Ji C J, Wang Y Q, Wang J N 2008 Acta Phys. Sin. 57 5277 (in Chinese) [罗向东、姬长建、王玉琦、王建农 2008 物理学报 57 5277]

    [3]

    Yang W, Ji Y, Luo H H, Ruan X Z, Wang W Z, Zhao J H 2009 Acta Phys. Sin. 58 8560 (in Chinese) [杨 威、姬 扬、罗海辉、阮学忠、王玮竹、赵建华 2009 物理学报 58 8560]

    [4]

    Gareev R R, Petukhov A, Schlapps M, Sadowski J, Wegscheider W 2010 Appl. Phys. Lett. 96 052114

    [5]

    Zhou R, Sun B Q, Ruan X Z, Gan H D, Ji Y, Wang W Z, Zhao J H 2008 Acta Phys. Sin. 57 5244 (in Chinese) [周 蓉、孙宝权、阮学忠、甘华东、姬 扬、王玮竹、赵建华 2008 物理学报 57 5244]

    [6]

    Ohya S, Ohno K, Tanaka M 2007 Appl. Phys. Lett. 90 112503

    [7]

    Kuo C P, Vong S K, Cohen R M, Stringfellow G B 1985 J. Appl. Phys. 57 5428

    [8]

    Dunstan D J 1997 Journal of Materials Science:Materials in Electronics 8 337

    [9]

    Glunk M, Daeubler J, Dreher L, Schwaiger S, Schoch W, Sauer R, Limmer W, Brandlmaier A, Goennenwein S T B, Bihler C, Brandt M S 2009 Phys. Rev. B 79 195206

    [10]

    Sadowski J, Domagala J Z 2004 Phys. Rev. B 69 075206

    [11]

    Yoon I T, Kang T W 2009 Journal of Magnetism and Magnetic Materials 321 2257

    [12]

    Seong M J, Chun S H, Cheong H M, Samarth N, Mascarenhas A 2002 Phys. Rev. B 66 033202

    [13]

    Chen L, Yan S, Xu P F, Lu J, Wang W Z, Deng J J, Qian X, Ji Y, Zhao J H 2009 Appl. Phys. Lett. 95 182505

    [14]

    Xu Z J 2007 Detection and Analysis of Semiconductor (2nd ed) (Beijing:Science Press) pp51—54 (in Chinese) [许振嘉 2007 半导体的检测与分析(第二版)(北京:科学出版社)第51—54页]

    [15]

    Shioda R, Ando K, Hayashi T, Tanaka M 1998 Phys. Rev. B 58 1100

    [16]

    Guo X G, Chen X S, Sun Y L, Zhou X H, Sun L Z, Lu W 2004 Acta Phys. Sin. 53 1516 (in Chinese) [郭旭光、陈效双、孙沿林、周孝好、孙立忠、陆 卫 2004 物理学报 53 1516]

    [17]

    Liu X D, Wang W Z, Gao R X, Zhao J H, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 3857 (in Chinese) [刘晓东、王玮竹、高瑞鑫、赵建华、文锦辉、林位株、赖天树 2008 物理学报 57 3857]

    [18]

    Lematre A, Miard A, Travers L, Mauguin O, Largeau L, Gourdon C, Jeudy V, Tran M, George J M 2008 Appl. Phys. Lett. 93 021123

    [19]

    Maek J, Kudrnovsky J, Máca F, Sinova J, MacDonald A H , Campion R P, Gallagher B L, Jungwirth T 2007 Phys. Rev. B 75 045202

  • [1]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Lye Y 1996 Appl. Phys. Lett. 69 363

    [2]

    Luo X D, Ji C J, Wang Y Q, Wang J N 2008 Acta Phys. Sin. 57 5277 (in Chinese) [罗向东、姬长建、王玉琦、王建农 2008 物理学报 57 5277]

    [3]

    Yang W, Ji Y, Luo H H, Ruan X Z, Wang W Z, Zhao J H 2009 Acta Phys. Sin. 58 8560 (in Chinese) [杨 威、姬 扬、罗海辉、阮学忠、王玮竹、赵建华 2009 物理学报 58 8560]

    [4]

    Gareev R R, Petukhov A, Schlapps M, Sadowski J, Wegscheider W 2010 Appl. Phys. Lett. 96 052114

    [5]

    Zhou R, Sun B Q, Ruan X Z, Gan H D, Ji Y, Wang W Z, Zhao J H 2008 Acta Phys. Sin. 57 5244 (in Chinese) [周 蓉、孙宝权、阮学忠、甘华东、姬 扬、王玮竹、赵建华 2008 物理学报 57 5244]

    [6]

    Ohya S, Ohno K, Tanaka M 2007 Appl. Phys. Lett. 90 112503

    [7]

    Kuo C P, Vong S K, Cohen R M, Stringfellow G B 1985 J. Appl. Phys. 57 5428

    [8]

    Dunstan D J 1997 Journal of Materials Science:Materials in Electronics 8 337

    [9]

    Glunk M, Daeubler J, Dreher L, Schwaiger S, Schoch W, Sauer R, Limmer W, Brandlmaier A, Goennenwein S T B, Bihler C, Brandt M S 2009 Phys. Rev. B 79 195206

    [10]

    Sadowski J, Domagala J Z 2004 Phys. Rev. B 69 075206

    [11]

    Yoon I T, Kang T W 2009 Journal of Magnetism and Magnetic Materials 321 2257

    [12]

    Seong M J, Chun S H, Cheong H M, Samarth N, Mascarenhas A 2002 Phys. Rev. B 66 033202

    [13]

    Chen L, Yan S, Xu P F, Lu J, Wang W Z, Deng J J, Qian X, Ji Y, Zhao J H 2009 Appl. Phys. Lett. 95 182505

    [14]

    Xu Z J 2007 Detection and Analysis of Semiconductor (2nd ed) (Beijing:Science Press) pp51—54 (in Chinese) [许振嘉 2007 半导体的检测与分析(第二版)(北京:科学出版社)第51—54页]

    [15]

    Shioda R, Ando K, Hayashi T, Tanaka M 1998 Phys. Rev. B 58 1100

    [16]

    Guo X G, Chen X S, Sun Y L, Zhou X H, Sun L Z, Lu W 2004 Acta Phys. Sin. 53 1516 (in Chinese) [郭旭光、陈效双、孙沿林、周孝好、孙立忠、陆 卫 2004 物理学报 53 1516]

    [17]

    Liu X D, Wang W Z, Gao R X, Zhao J H, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 3857 (in Chinese) [刘晓东、王玮竹、高瑞鑫、赵建华、文锦辉、林位株、赖天树 2008 物理学报 57 3857]

    [18]

    Lematre A, Miard A, Travers L, Mauguin O, Largeau L, Gourdon C, Jeudy V, Tran M, George J M 2008 Appl. Phys. Lett. 93 021123

    [19]

    Maek J, Kudrnovsky J, Máca F, Sinova J, MacDonald A H , Campion R P, Gallagher B L, Jungwirth T 2007 Phys. Rev. B 75 045202

  • [1] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [2] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析. 物理学报, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [3] 叶盈, 周旺民. 生长方向对量子点应变与应变弛豫的影响. 物理学报, 2013, 62(5): 058105. doi: 10.7498/aps.62.058105
    [4] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [5] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [6] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [7] 杨洪东, 于奇, 王向展, 李竞春, 宁宁, 杨谟华. 基于低温硅技术的赝晶SiGe应变弛豫机理. 物理学报, 2010, 59(8): 5743-5748. doi: 10.7498/aps.59.5743
    [8] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法. 物理学报, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [9] 罗向东, 姬长建, 王玉琦, 王建农. 低温分子束外延生长的GaMnAs反射光谱的低能振荡现象. 物理学报, 2008, 57(8): 5277-5283. doi: 10.7498/aps.57.5277
    [10] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 张念国, 李 彤, 邢艳辉, 韩 军, 郭 霞, 沈光地. 高空穴浓度Mg掺杂InGaN外延材料性能的研究. 物理学报, 2006, 55(9): 4951-4955. doi: 10.7498/aps.55.4951
    [11] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [12] 杜晓松, S. Hak, O. C. Rogojanu, T. Hibma. 氧化铬外延薄膜的x射线研究. 物理学报, 2004, 53(10): 3510-3514. doi: 10.7498/aps.53.3510
    [13] 刘砚章, 范希庆. 石英中Al3+-空穴取向变化弛豫过程中的红外发散响应. 物理学报, 1994, 43(2): 332-339. doi: 10.7498/aps.43.332
    [14] 李建华, 麦振洪, 崔树范. 应变弛豫InGaAs/GaAs超晶格的X射线双晶衍射及形貌研究. 物理学报, 1993, 42(9): 1485-1490. doi: 10.7498/aps.42.1485
    [15] 王国樑, 戴培英. 时间和空间无序对玻璃超声弛豫的影响——红外发散响应理论的推广. 物理学报, 1990, 39(7): 95-100. doi: 10.7498/aps.39.95
    [16] 杨洪宁, 林步镇, 方俊鑫. 准正电子偶素弛豫机制的研究. 物理学报, 1986, 35(6): 697-703. doi: 10.7498/aps.35.697
    [17] 丁鄂江, 黄祖洽. 球对称无限空间中稀薄气体的一种弛豫. 物理学报, 1985, 34(3): 289-297. doi: 10.7498/aps.34.289
    [18] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
    [19] 甘子钊. 硅中空穴与核的超精细作用及p型硅的核磁弛豫. 物理学报, 1965, 21(4): 691-706. doi: 10.7498/aps.21.691
    [20] 曾训一. 倒易空间点阵用于多晶X射线衍射图象的诠释. 物理学报, 1963, 19(3): 202-204. doi: 10.7498/aps.19.202
计量
  • 文章访问数:  7073
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-15
  • 修回日期:  2010-09-09
  • 刊出日期:  2011-01-05

/

返回文章
返回