搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能

向军 郭银涛 褚艳秋 周广振

双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能

向军, 郭银涛, 褚艳秋, 周广振
PDF
导出引用
导出核心图
  • 采用有机凝胶法结合高温烧结制备了Sm0.9Sr0.1Al1-xCoxO3-δ (SSAC,x = 0.2,0.4,0.5,0.6) 系列钙钛矿结构混合导电陶瓷,并详细讨论了烧结温度和Co掺杂量对其晶体结构、相组成和电性能的影响.X射线衍射结果显示,过高的烧结温度或Co掺杂量都会导致杂相Sm(Sr)CoO3生成,Co在该体系的固溶限位于50mol%—60mol%之间,Co对Al的部分取代使晶格体积增大.电性能测量结果表明,SSAC陶瓷的电导率主要取决于p型电导,其导电行为符合小极化子跳跃导电机制;随着烧结温度的升高,材料的电导率逐渐增大;在固溶限内随Co含量的增加,SSAC陶瓷的电导率增大,表观活化能减小;1200 ℃烧结10 h制得的单相Sm0.9Sr0.1Al0.5Co0.5O3-δ陶瓷体在800℃的电导率达63.4 S/cm,表观活化能为0.14eV.具有良好电性能的SSAC导电陶瓷有望应用于高温电化学领域.
    • 基金项目: 江苏省高校自然科学研究计划(批准号:2008SL061J)资助的课题.
    [1]

    Marques F M B, Kharton V V, Naumovich E N, Shaula A L, Kovalevsky A V, Yaremchenko A A 2006 Solid State Ionics 177 1697

    [2]

    Liu X M, Yang M, Lü Z, Pei L, Liu J, Sun W H 1999 Chin. Phys. 8 690

    [3]

    Shao Z P, Haile S M 2004 Nature 431 170

    [4]

    Wang H, Tablet C, Feldhoff A, Caro J 2005 Adv. Mater. 17 1785

    [5]

    Alberti G, Casciola M 2001 Solid State Ionics 145 3

    [6]

    Xia C R, Rauch W, Chen F L, Liu M L 2002 Solid State Ionics 149 11

    [7]

    Koyama M, Wen C, Masuyama T, Otomo J, Fukunaga H, Yamada K, Eguchi K, Takahashi H 2001 J. Electrochem. Soc. 148 A795

    [8]

    Martiniz-Juarez A, Sanchez L, Chinarro E, Recio P, Pascual C, Jurado J R 2000 Solid State Ionics 135 525

    [9]

    Senaris-Rodriguez M A, Goodenough J B 1995 J. Solid State Chem. 116 224

    [10]

    Lv H, Wu Y J, Huang B, Zhao B Y, Hu K A 2006 Solid State Ionics 177 901

    [11]

    Lü H, Zhao B Y, Sun G, Chen G, Hu K A 2007 Mater. Res. Bull. 42 1999

    [12]

    Asamoto M, Harada N, Iwamoto Y, Yamaura H, Sadaoka Y, Yahiro H 2009 Top. Catal. 52 823

    [13]

    Ishihara T, Tabuchi J, Ishikawa S, Yan J W, Enoki M, Matsumoto H 2006 Solid State Ionics 177 1949

    [14]

    Polini R, Falsetti A, Traversa E, Schf O, Kanuth P 2007 J. Eur. Ceram. Soc. 27 4291

    [15]

    Basu S, Chakraborty A, Devi P S, Maiti H S 2005 J. Am. Ceram. Soc. 88 2110

    [16]

    Ji Y P, Gyeong M C 2006 J. Electroceram. 17 787

    [17]

    Li S, Bergman B, Zhao Z 2009 J. Eur. Ceram. Soc. 29 1133

    [18]

    Yamamure Y, Ihara C,Kawasakis S, Sakai H, Suzuki K, Takami S, Kubo M, Miyamoto A 2003 Solid State Ionics 160 93

    [19]

    Xiang J, Wang X H 2008 Acta Phys. Sin. 57 4417 (in Chinese)[向 军、 王晓辉 2008 物理学报 57 4417]

    [20]

    Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese)[向 军、 卫 婷、 彭田贵、 张 誉、 娄可行、 沈湘黔 2009 物理学报 58 3402]

    [21]

    Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Chim. Sin. 67 2450 (in Chinese)[向 军、 卫 婷、 彭田贵、 张 誉、 娄可行、 沈湘黔 2009 化学学报 67 2450]

    [22]

    Shannon R D, Prewitt C T 1969 Acta Crystallogr. Sect. B 25 925

    [23]

    Fu Q X, Tietz F, Lersch P, Stǒver D 2006 Solid State Ionics 177 1059

    [24]

    Song H S, Min J H, Kim J, Moon J 2009 J. Power Sources 191 269

    [25]

    Yang S, He T M, He Q 2008 J. Alloys Compd. 450 400

    [26]

    Huang C Y, Huang T J 2002 J. Mater. Sci. 37 4581

    [27]

    Zhang K, Ran R, Ge L, Shao Z P, Jin W Q, Xu N P 2008 J. Membr. Sci. 323 436

    [28]

    Nagai T, Ito W, Sakon T 2007 Solid State Ionics 177 3433

    [29]

    Khrokounov B A, Nfa H, Aldinger F 2006 J. Solid State Electrochem. 10 479

    [30]

    Fu Q X, Xu Z Y, Peng D K, Liu X Q, Meng G Y 2003 J. Mater. Sci. 38 2901

    [31]

    Liu R R, Xu D P, Li S, Lü Z, Xue Y F, Wang D Y, Su W H 2005 J. Jilin Univ. (Sci. Ed. ) 43 658 (in Chinese) [刘润茹、 许大鹏、 李 霜、 吕 喆、 薛燕峰、 王德涌、 苏文辉 2005吉林大学学报 (理学版) 43 658]

  • [1]

    Marques F M B, Kharton V V, Naumovich E N, Shaula A L, Kovalevsky A V, Yaremchenko A A 2006 Solid State Ionics 177 1697

    [2]

    Liu X M, Yang M, Lü Z, Pei L, Liu J, Sun W H 1999 Chin. Phys. 8 690

    [3]

    Shao Z P, Haile S M 2004 Nature 431 170

    [4]

    Wang H, Tablet C, Feldhoff A, Caro J 2005 Adv. Mater. 17 1785

    [5]

    Alberti G, Casciola M 2001 Solid State Ionics 145 3

    [6]

    Xia C R, Rauch W, Chen F L, Liu M L 2002 Solid State Ionics 149 11

    [7]

    Koyama M, Wen C, Masuyama T, Otomo J, Fukunaga H, Yamada K, Eguchi K, Takahashi H 2001 J. Electrochem. Soc. 148 A795

    [8]

    Martiniz-Juarez A, Sanchez L, Chinarro E, Recio P, Pascual C, Jurado J R 2000 Solid State Ionics 135 525

    [9]

    Senaris-Rodriguez M A, Goodenough J B 1995 J. Solid State Chem. 116 224

    [10]

    Lv H, Wu Y J, Huang B, Zhao B Y, Hu K A 2006 Solid State Ionics 177 901

    [11]

    Lü H, Zhao B Y, Sun G, Chen G, Hu K A 2007 Mater. Res. Bull. 42 1999

    [12]

    Asamoto M, Harada N, Iwamoto Y, Yamaura H, Sadaoka Y, Yahiro H 2009 Top. Catal. 52 823

    [13]

    Ishihara T, Tabuchi J, Ishikawa S, Yan J W, Enoki M, Matsumoto H 2006 Solid State Ionics 177 1949

    [14]

    Polini R, Falsetti A, Traversa E, Schf O, Kanuth P 2007 J. Eur. Ceram. Soc. 27 4291

    [15]

    Basu S, Chakraborty A, Devi P S, Maiti H S 2005 J. Am. Ceram. Soc. 88 2110

    [16]

    Ji Y P, Gyeong M C 2006 J. Electroceram. 17 787

    [17]

    Li S, Bergman B, Zhao Z 2009 J. Eur. Ceram. Soc. 29 1133

    [18]

    Yamamure Y, Ihara C,Kawasakis S, Sakai H, Suzuki K, Takami S, Kubo M, Miyamoto A 2003 Solid State Ionics 160 93

    [19]

    Xiang J, Wang X H 2008 Acta Phys. Sin. 57 4417 (in Chinese)[向 军、 王晓辉 2008 物理学报 57 4417]

    [20]

    Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese)[向 军、 卫 婷、 彭田贵、 张 誉、 娄可行、 沈湘黔 2009 物理学报 58 3402]

    [21]

    Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Chim. Sin. 67 2450 (in Chinese)[向 军、 卫 婷、 彭田贵、 张 誉、 娄可行、 沈湘黔 2009 化学学报 67 2450]

    [22]

    Shannon R D, Prewitt C T 1969 Acta Crystallogr. Sect. B 25 925

    [23]

    Fu Q X, Tietz F, Lersch P, Stǒver D 2006 Solid State Ionics 177 1059

    [24]

    Song H S, Min J H, Kim J, Moon J 2009 J. Power Sources 191 269

    [25]

    Yang S, He T M, He Q 2008 J. Alloys Compd. 450 400

    [26]

    Huang C Y, Huang T J 2002 J. Mater. Sci. 37 4581

    [27]

    Zhang K, Ran R, Ge L, Shao Z P, Jin W Q, Xu N P 2008 J. Membr. Sci. 323 436

    [28]

    Nagai T, Ito W, Sakon T 2007 Solid State Ionics 177 3433

    [29]

    Khrokounov B A, Nfa H, Aldinger F 2006 J. Solid State Electrochem. 10 479

    [30]

    Fu Q X, Xu Z Y, Peng D K, Liu X Q, Meng G Y 2003 J. Mater. Sci. 38 2901

    [31]

    Liu R R, Xu D P, Li S, Lü Z, Xue Y F, Wang D Y, Su W H 2005 J. Jilin Univ. (Sci. Ed. ) 43 658 (in Chinese) [刘润茹、 许大鹏、 李 霜、 吕 喆、 薛燕峰、 王德涌、 苏文辉 2005吉林大学学报 (理学版) 43 658]

  • [1] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究 . 物理学报, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [2] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [3] 袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文. Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析. 物理学报, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [4] 赵小强, 赵学童, 许超, 李巍巍, 任路路, 廖瑞金, 李建英. ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展. 物理学报, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [5] 金 灿, 朱 骏, 毛翔宇, 何军辉, 陈小兵. Mo掺杂SrBi4Ti4O15陶瓷的铁电介电性能. 物理学报, 2006, 55(7): 3716-3720. doi: 10.7498/aps.55.3716
    [6] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [7] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [8] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究. 物理学报, 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [9] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [10] 董国义, 李龙江, 吕青, 王淑芳, 戴守愚, 王江龙, 傅光生. Lu3+掺杂对CdO陶瓷电、热输运性能的影响. 物理学报, 2014, 63(17): 178102. doi: 10.7498/aps.63.178102
    [11] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [12] 羌 锋, 朱 骏, 毛翔宇, 陈小兵. Dy掺杂对Sr2Bi4Ti5O18铁电陶瓷性能的影响. 物理学报, 2005, 54(11): 5422-5427. doi: 10.7498/aps.54.5422
    [13] 毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令. 晶粒尺寸对Ba0.70Sr0.30TiO3陶瓷介电性能的影响规律及机理研究. 物理学报, 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [14] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [15] 刘 鹏, 贺 颖, 李 俊, 朱刚强, 边小兵. 添加Nb对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, 2007, 56(9): 5489-5493. doi: 10.7498/aps.56.5489
    [16] 赵学童, 廖瑞金, 李建英, 王飞鹏. 直流老化对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [17] 慕春红, 刘 鹏, 贺 颖, 张 丹, 孟 玲, 边小兵. Fe掺杂CaCu3Ti4O12陶瓷的介电性能与弛豫特性研究. 物理学报, 2008, 57(4): 2432-2437. doi: 10.7498/aps.57.2432
    [18] 余柯涵, 钱列加, 彭 波, 范滇元, 叶云霞. Nd3+螯合物的含氢有机溶液光谱性能研究. 物理学报, 2006, 55(12): 6424-6429. doi: 10.7498/aps.55.6424
    [19] 于世瑞, 赵有源, 李潞瑛. 有机材料ZnTBP-CA-PhR的非线性吸收和光学限幅性能. 物理学报, 2003, 52(4): 859-863. doi: 10.7498/aps.52.859
    [20] 徐卓, 冯玉军, 郑曙光, 金安, 王方林, 姚熹. 等静压和温度诱导的PbLa(Zr,Sn,Ti)O3反铁电陶瓷相变和介电性能研究. 物理学报, 2001, 50(9): 1787-1794. doi: 10.7498/aps.50.1787
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3532
  • PDF下载量:  927
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-02
  • 修回日期:  2010-05-21
  • 刊出日期:  2011-02-15

双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能

  • 1. 江苏科技大学数理学院,镇江 212003
    基金项目: 

    江苏省高校自然科学研究计划(批准号:2008SL061J)资助的课题.

摘要: 采用有机凝胶法结合高温烧结制备了Sm0.9Sr0.1Al1-xCoxO3-δ (SSAC,x = 0.2,0.4,0.5,0.6) 系列钙钛矿结构混合导电陶瓷,并详细讨论了烧结温度和Co掺杂量对其晶体结构、相组成和电性能的影响.X射线衍射结果显示,过高的烧结温度或Co掺杂量都会导致杂相Sm(Sr)CoO3生成,Co在该体系的固溶限位于50mol%—60mol%之间,Co对Al的部分取代使晶格体积增大.电性能测量结果表明,SSAC陶瓷的电导率主要取决于p型电导,其导电行为符合小极化子跳跃导电机制;随着烧结温度的升高,材料的电导率逐渐增大;在固溶限内随Co含量的增加,SSAC陶瓷的电导率增大,表观活化能减小;1200 ℃烧结10 h制得的单相Sm0.9Sr0.1Al0.5Co0.5O3-δ陶瓷体在800℃的电导率达63.4 S/cm,表观活化能为0.14eV.具有良好电性能的SSAC导电陶瓷有望应用于高温电化学领域.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回