搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变系数非线性Schrödinger方程的孤子解及其相互作用

钱存 王亮亮 张解放

变系数非线性Schrödinger方程的孤子解及其相互作用

钱存, 王亮亮, 张解放
PDF
导出引用
导出核心图
  • 在光孤子通信和Bose-Einstein凝聚体动力学研究中,求解广义非线性Schrödinger方程是一个重要的研究方向.稳定的孤子模式具有潜在的应用,可为实验技术的实现提供依据.本文引进一种相似变换,将变系数非线性Schrödinger方程转化成非线性Schrödinger方程,并利用已知解深入研究变系数非线性Schrödinger方程解的单孤子解、两孤子解和连续波背景下的孤子解.同时通过选择不同的具体参数,给出它们的图像分析和相应的讨论.
    • 基金项目: 国家自然科学基金(批准号:10672147, 11072219)和浙江师范大学创新团队计划资助的课题.
    [1]

    Thacker H B 1981 Rev. Mod. Phys. 53 253

    [2]

    Bogatyrev V A, Bubnov M M, Dianov E M,Kurkov A S, Mamyshev P V, Prokhorov A M, Rumyantsev S D, Semenov V A, Semenov S L, Sysoliatin A A, Chernikov S V, Guryanov A N, Devyatykh G G, Miroshnichenko S I 1991 J. Lightwave Technol. 9 561

    [3]

    Mamyshev P V, Chers V, Dianov M 1991 IEEE J. Quantum Electron. 7 2347

    [4]

    Taijima K 1987 Opt. Lett. 12 54

    [5]

    Bordon E E, Anderson W L 1989 J. Lightwave Technol. 7 353

    [6]

    Wabnitz S 1996 Opt. Lett. 21 638

    [7]

    Kuehl H H 1988 J. Opt. Soc. Am. B 5 709

    [8]

    Smith N J, Doran N J 1996 Opt. Lett. 21 570

    [9]

    Kivshar Y S, Konotop V V 1989 Sov. J . Quantum Electron. 19 566

    [10]

    Quiroga-Teixeiro M L, Andrekson P A 1996 J. Opt. Soc. Am. B 13 687

    [11]

    Gabitov I R, Turitsyn S K 1996 Opt.Lett. 21 37

    [12]

    Zhang J F, Cheng F Y 2001 Acta Phys. Sin. 50 1648 (in Chinese)[张解放、陈芳跃 2001 物理学报 50 1648 ]

    [13]

    Lou S Y, Ruan H Y 1992 Acta Phys. Sin. 41 182 (in Chinese)[楼森岳、阮航宇 1992 物理学报 41 182 ]

    [14]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 1923 (in Chinese)[刘式适、付遵涛、刘式达、赵 强 2002 物理学报 51 1923 ]

    [15]

    Xu C Z, Zhang J F 2004 Acta Phys. Sin. 53 3652(in Chinese) [徐昌智、张解放 2004 物理学报 53 3652]

    [16]

    Hao R Y, Lu L, Li Z H 2004 Opt. Commun. 79 236

    [17]

    Li B, Chen Y 2004 Chaos Soliton Fract. 21 241

    [18]

    Kruglov V I, Peacock A C, Harvery J D 2003 Phys. Rev. Lett. 90 11392

    [19]

    Zong F D, Dai C Q, Yang Q, Zhang J F 2006 Acta Phys. Sin. 55 3805 [宗丰德、戴朝卿、杨 琴、张解放 2006 物理学报 55 3805]

    [20]

    Belmonte-Beitia J, Pérez-García V M, Vekslerchik V,Konotop V V 2008 Phys. Rev. Lett. 100 164102

    [21]

    Belmonte-Beitia J,Cuevas J 2009 J. Phys. A 42 165201

    [22]

    Yan J R 1996 Chin. Sci. Bull. 41 17

    [23]

    Bélanger N, Bélanger P A 1996 Opt. Commun. 124 301

    [24]

    He J S, Ji M,Li Y S 2007 Chin. Phys. Lett. 24 8

    [25]

    Sergey A P,Govind P A 2006 Phys. Rev. Lett. 97 013901

  • [1]

    Thacker H B 1981 Rev. Mod. Phys. 53 253

    [2]

    Bogatyrev V A, Bubnov M M, Dianov E M,Kurkov A S, Mamyshev P V, Prokhorov A M, Rumyantsev S D, Semenov V A, Semenov S L, Sysoliatin A A, Chernikov S V, Guryanov A N, Devyatykh G G, Miroshnichenko S I 1991 J. Lightwave Technol. 9 561

    [3]

    Mamyshev P V, Chers V, Dianov M 1991 IEEE J. Quantum Electron. 7 2347

    [4]

    Taijima K 1987 Opt. Lett. 12 54

    [5]

    Bordon E E, Anderson W L 1989 J. Lightwave Technol. 7 353

    [6]

    Wabnitz S 1996 Opt. Lett. 21 638

    [7]

    Kuehl H H 1988 J. Opt. Soc. Am. B 5 709

    [8]

    Smith N J, Doran N J 1996 Opt. Lett. 21 570

    [9]

    Kivshar Y S, Konotop V V 1989 Sov. J . Quantum Electron. 19 566

    [10]

    Quiroga-Teixeiro M L, Andrekson P A 1996 J. Opt. Soc. Am. B 13 687

    [11]

    Gabitov I R, Turitsyn S K 1996 Opt.Lett. 21 37

    [12]

    Zhang J F, Cheng F Y 2001 Acta Phys. Sin. 50 1648 (in Chinese)[张解放、陈芳跃 2001 物理学报 50 1648 ]

    [13]

    Lou S Y, Ruan H Y 1992 Acta Phys. Sin. 41 182 (in Chinese)[楼森岳、阮航宇 1992 物理学报 41 182 ]

    [14]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 1923 (in Chinese)[刘式适、付遵涛、刘式达、赵 强 2002 物理学报 51 1923 ]

    [15]

    Xu C Z, Zhang J F 2004 Acta Phys. Sin. 53 3652(in Chinese) [徐昌智、张解放 2004 物理学报 53 3652]

    [16]

    Hao R Y, Lu L, Li Z H 2004 Opt. Commun. 79 236

    [17]

    Li B, Chen Y 2004 Chaos Soliton Fract. 21 241

    [18]

    Kruglov V I, Peacock A C, Harvery J D 2003 Phys. Rev. Lett. 90 11392

    [19]

    Zong F D, Dai C Q, Yang Q, Zhang J F 2006 Acta Phys. Sin. 55 3805 [宗丰德、戴朝卿、杨 琴、张解放 2006 物理学报 55 3805]

    [20]

    Belmonte-Beitia J, Pérez-García V M, Vekslerchik V,Konotop V V 2008 Phys. Rev. Lett. 100 164102

    [21]

    Belmonte-Beitia J,Cuevas J 2009 J. Phys. A 42 165201

    [22]

    Yan J R 1996 Chin. Sci. Bull. 41 17

    [23]

    Bélanger N, Bélanger P A 1996 Opt. Commun. 124 301

    [24]

    He J S, Ji M,Li Y S 2007 Chin. Phys. Lett. 24 8

    [25]

    Sergey A P,Govind P A 2006 Phys. Rev. Lett. 97 013901

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4593
  • PDF下载量:  1889
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-29
  • 修回日期:  2010-09-14
  • 刊出日期:  2011-03-05

变系数非线性Schrödinger方程的孤子解及其相互作用

  • 1. 浙江师范大学非线性物理研究所,金华 321004
    基金项目: 

    国家自然科学基金(批准号:10672147, 11072219)和浙江师范大学创新团队计划资助的课题.

摘要: 在光孤子通信和Bose-Einstein凝聚体动力学研究中,求解广义非线性Schrödinger方程是一个重要的研究方向.稳定的孤子模式具有潜在的应用,可为实验技术的实现提供依据.本文引进一种相似变换,将变系数非线性Schrödinger方程转化成非线性Schrödinger方程,并利用已知解深入研究变系数非线性Schrödinger方程解的单孤子解、两孤子解和连续波背景下的孤子解.同时通过选择不同的具体参数,给出它们的图像分析和相应的讨论.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回