搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究

顾江 鲁宏 王强

AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究

顾江, 鲁宏, 王强
PDF
导出引用
导出核心图
  • 本文系统研究了AlGaN/GaN基高速电子迁移率晶体管器件界面热阻和工作温度对器件在高功率下的电流坍塌效应的影响规律.研究发现低漏极电压下热电子是导致负微分输出电导的重要因素,器件工作温度变高会使负微分输出电导减小.高漏极电压下自加热效应是导致电流坍塌的一个重要因素.随着界面热阻的增加,器件跨导降低,阈值电压增大.同时,由于工作环境温度的增高,器件随之温度增高,载流子迁移率会显著降低. 最终这两种因素会引起AlGaN/GaN基高速电子迁移率晶体管器件显著的电流坍塌效应,从而降低了器件整体性能.
    [1]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta. Phys. Sin. 58 0511 (in Chinese) [谷文萍、郝 跃、张进城、王 冲、冯 倩、马晓华 2009 物理学报 58 511]

    [2]

    Hu W D, Chen X S, Quan Z J, Zhang M X, Huang Y, Xia C S, Lu W, Ye D P 2007 J. Appl. Phys. 102 034502

    [3]

    Ding G J, Guo L W, Xing Z G, Chen Y, Xu P Q, Jia H Q, Zhou J M, Chen H 2010 Acta Phys. Sin. 59 5724 (in Chinese) [丁国建、郭丽伟、邢志刚、陈 耀、徐培强、贾海强、周均铭、陈 弘 2010 物理学报 59 5724]

    [4]

    Hu W D, Chen X S, Quan Z J, Xia S C, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [5]

    Hu W D, Chen X S, Quan Z J, Xia S C, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [6]

    Xi G Y, Ren F, Hao Z B, Wang L, Li H T, Jiang Y, Zhao W, Han Y J, Luo Y 2008 Acta Phys. Sin. 57 7238 (in Chinese) [席光义、任 凡、郝智彪、汪 莱、李洪涛、江 洋、赵维韩、彦 军、罗 毅 2008 物理学报 57 7238]

    [7]

    Simin G, Yang J Z, Koudymov A, Adivarahan V, Yang J, Khan M A 2006 Appl. Phys. Lett. 89 033510

    [8]

    Wang L, Hu W D, Chen X S, Lu W 2010 J. Appl. Phys. 108 054501

    [9]

    Wang C, Quan S, Zhang J F, Hao Y, Feng Q, Chen J F 2009 Acta. Phys. Sin. 58 1966 (in Chinese) [王 冲、全 思、张金凤、郝 跃、冯 倩、陈军峰 2009 物理学报 58 1966]

    [10]

    Hu W D, Chen X S, Zhou X C, Quan Z J, Lu W 2006 Microelectronics Journal 37 613

    [11]

    Braga N, Mickevicius R, Gaska R, Hu X, Shur M S, Asif K M, Simin G, Yang J 2004 J. Appl. Phys. 95 6409

    [12]

    Wang L, Hu W D, Chen X S, Lu W 2010 Acta. Phys. Sin. 59 5730 (in Chinese)[王 林、胡伟达、陈效双、陆 卫 2010 物理学报 59 5730]

    [13]

    Brag N, Mickevicius R, Gaska R, Shur M S, Asif K M, Simin G 2004 Appl. Phys. Lett. 85 4780

    [14]

    Hu W D, Chen X S, Yin F, Zhang J B, Lu W 2009 J. Appl. Phys. 105 084502

    [15]

    Wei W, Lin R B, Feng Q, HaoY 2008 Acta Phys. Sin. 57 467(in Chinese)[魏 巍、林若兵、冯 倩、郝 跃 2008 物理学报 57 467]

    [16]

    Hao L C, Duan J L, 2010 Acta. Phys. Sin. 59 2746(in Chinese)[郝立超、段俊丽 2010 物理学报 59 2746]

    [17]

    Vetury R, Naiqain Zhang Q, Stacia Keller, Mishra K U 2001 IEEE Trans.Electron Devices 48 560

    [18]

    Kong Y C, Zheng Y D, Zhou C H, Deng Y Z , Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta. Phys. Sin. 53 2320(in Chinese)[孔月婵、郑有窦、周春红、邓永桢、顾书林、沈 波、张 荣、韩 平、江若琏、施 毅 2004 物理学报 53 2320]

    [19]

    Bykhovski A D, Gaska R, Shur M S 1998 Appl. Phys. Lett. 73 24

    [20]

    Liu L J, Yue Y Z, Zhang J C, Ma X H, Dong Z D, Hao Y 2009 Acta. Phys. Sin. 58 536 (in Chinese) [刘林杰、岳远征、张进城、马晓华、董作典、郝 跃 2009 物理学报 58 536]

    [21]

    Yu L S, Ying Q J, Qiao D, Lau S S, Boutros K S, Redwing J M 1998 Appl. Phys. Lett. 73 26

    [22]

    Valentin O Turina, Alexander A 2006 J. Appl. Phys. 100 054501

    [23]

    Vitusevich S A, Danylyuk S V, Klein N, Petrychuk M V, Avksentyev A Yu, Sokolov V N, Kochelap V A, Belyaev A E, Tilak V, Smart J, Vertiatchikh A, Eastman L F 2003 Appl. Phys. Lett. 82 748

    [24]

    Gaska R, Osinsky A, Yang J W, Shur M S 1998 IEEE Elect. Dev. Lett. 19 89

    [25]

    Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y, Yang L A 2009 Chin. Phys. B 18 3014

    [26]

    Fan L, Hao Y, Zhao Y F, Zhang J C, Gao Z Y, Li P X 2009 Chin. Phys. B 18 2912

  • [1]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta. Phys. Sin. 58 0511 (in Chinese) [谷文萍、郝 跃、张进城、王 冲、冯 倩、马晓华 2009 物理学报 58 511]

    [2]

    Hu W D, Chen X S, Quan Z J, Zhang M X, Huang Y, Xia C S, Lu W, Ye D P 2007 J. Appl. Phys. 102 034502

    [3]

    Ding G J, Guo L W, Xing Z G, Chen Y, Xu P Q, Jia H Q, Zhou J M, Chen H 2010 Acta Phys. Sin. 59 5724 (in Chinese) [丁国建、郭丽伟、邢志刚、陈 耀、徐培强、贾海强、周均铭、陈 弘 2010 物理学报 59 5724]

    [4]

    Hu W D, Chen X S, Quan Z J, Xia S C, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [5]

    Hu W D, Chen X S, Quan Z J, Xia S C, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [6]

    Xi G Y, Ren F, Hao Z B, Wang L, Li H T, Jiang Y, Zhao W, Han Y J, Luo Y 2008 Acta Phys. Sin. 57 7238 (in Chinese) [席光义、任 凡、郝智彪、汪 莱、李洪涛、江 洋、赵维韩、彦 军、罗 毅 2008 物理学报 57 7238]

    [7]

    Simin G, Yang J Z, Koudymov A, Adivarahan V, Yang J, Khan M A 2006 Appl. Phys. Lett. 89 033510

    [8]

    Wang L, Hu W D, Chen X S, Lu W 2010 J. Appl. Phys. 108 054501

    [9]

    Wang C, Quan S, Zhang J F, Hao Y, Feng Q, Chen J F 2009 Acta. Phys. Sin. 58 1966 (in Chinese) [王 冲、全 思、张金凤、郝 跃、冯 倩、陈军峰 2009 物理学报 58 1966]

    [10]

    Hu W D, Chen X S, Zhou X C, Quan Z J, Lu W 2006 Microelectronics Journal 37 613

    [11]

    Braga N, Mickevicius R, Gaska R, Hu X, Shur M S, Asif K M, Simin G, Yang J 2004 J. Appl. Phys. 95 6409

    [12]

    Wang L, Hu W D, Chen X S, Lu W 2010 Acta. Phys. Sin. 59 5730 (in Chinese)[王 林、胡伟达、陈效双、陆 卫 2010 物理学报 59 5730]

    [13]

    Brag N, Mickevicius R, Gaska R, Shur M S, Asif K M, Simin G 2004 Appl. Phys. Lett. 85 4780

    [14]

    Hu W D, Chen X S, Yin F, Zhang J B, Lu W 2009 J. Appl. Phys. 105 084502

    [15]

    Wei W, Lin R B, Feng Q, HaoY 2008 Acta Phys. Sin. 57 467(in Chinese)[魏 巍、林若兵、冯 倩、郝 跃 2008 物理学报 57 467]

    [16]

    Hao L C, Duan J L, 2010 Acta. Phys. Sin. 59 2746(in Chinese)[郝立超、段俊丽 2010 物理学报 59 2746]

    [17]

    Vetury R, Naiqain Zhang Q, Stacia Keller, Mishra K U 2001 IEEE Trans.Electron Devices 48 560

    [18]

    Kong Y C, Zheng Y D, Zhou C H, Deng Y Z , Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta. Phys. Sin. 53 2320(in Chinese)[孔月婵、郑有窦、周春红、邓永桢、顾书林、沈 波、张 荣、韩 平、江若琏、施 毅 2004 物理学报 53 2320]

    [19]

    Bykhovski A D, Gaska R, Shur M S 1998 Appl. Phys. Lett. 73 24

    [20]

    Liu L J, Yue Y Z, Zhang J C, Ma X H, Dong Z D, Hao Y 2009 Acta. Phys. Sin. 58 536 (in Chinese) [刘林杰、岳远征、张进城、马晓华、董作典、郝 跃 2009 物理学报 58 536]

    [21]

    Yu L S, Ying Q J, Qiao D, Lau S S, Boutros K S, Redwing J M 1998 Appl. Phys. Lett. 73 26

    [22]

    Valentin O Turina, Alexander A 2006 J. Appl. Phys. 100 054501

    [23]

    Vitusevich S A, Danylyuk S V, Klein N, Petrychuk M V, Avksentyev A Yu, Sokolov V N, Kochelap V A, Belyaev A E, Tilak V, Smart J, Vertiatchikh A, Eastman L F 2003 Appl. Phys. Lett. 82 748

    [24]

    Gaska R, Osinsky A, Yang J W, Shur M S 1998 IEEE Elect. Dev. Lett. 19 89

    [25]

    Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y, Yang L A 2009 Chin. Phys. B 18 3014

    [26]

    Fan L, Hao Y, Zhao Y F, Zhang J C, Gao Z Y, Li P X 2009 Chin. Phys. B 18 2912

  • [1] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [3] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [4] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [5] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [6] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [7] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [9] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [10] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3966
  • PDF下载量:  954
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-07
  • 修回日期:  2010-10-22
  • 刊出日期:  2011-07-15

AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究

  • 1. (1)常熟理工学院物理电子系,常熟 215500; (2)南通大学电子信息学院,南通 226019

摘要: 本文系统研究了AlGaN/GaN基高速电子迁移率晶体管器件界面热阻和工作温度对器件在高功率下的电流坍塌效应的影响规律.研究发现低漏极电压下热电子是导致负微分输出电导的重要因素,器件工作温度变高会使负微分输出电导减小.高漏极电压下自加热效应是导致电流坍塌的一个重要因素.随着界面热阻的增加,器件跨导降低,阈值电压增大.同时,由于工作环境温度的增高,器件随之温度增高,载流子迁移率会显著降低. 最终这两种因素会引起AlGaN/GaN基高速电子迁移率晶体管器件显著的电流坍塌效应,从而降低了器件整体性能.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回