搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线偏振拉盖尔-高斯光束的远场发散特性

周国泉

线偏振拉盖尔-高斯光束的远场发散特性

周国泉
PDF
导出引用
导出核心图
  • 利用稳相法和矢量结构理论, 导出了线偏振拉盖尔-高斯光束的矢量结构项TE项和TM项在远场的解析表达式. 进而利用TE项和TM项的远场能流分布, 给出了TE项和TM项的功率占总功率比例的度量式,同时还给出了线偏振拉盖尔-高斯光束、TE项和TM项三者远场发散角的解析式以及三者远场发散角间的关系式. 所得到的公式不仅适用于傍轴情形,而且还适用于非傍轴情形. 通过数值计算, 分析了TE项和TM项在远场的功率占总功率的比例与参数f和模数间的依赖关系;还分析了拉盖尔-高斯光束、TE项和TM项的远场发散角随参数f、模数和线偏振角的变化关系.这一研究从矢量结构本性揭示了线偏振拉盖尔-高斯光束的远场发散特性, 丰富了对其传输特性的认识.
    • 基金项目: 国家自然科学基金(批准号: 61178016)资助的课题.
    [1]

    Kogelnik H, Li T 1966 Proc. IEEE 54 1312

    [2]

    Tamm C 1988 Phys. Rev. A 38 5960

    [3]

    He H, Heckenberg N R, Rubinsztein-Dunlop H 1995 J. Mod. Opt. 42 217

    [4]

    Hasegawa T, Shimizu T 1999 Opt. Commun. 160 103

    [5]

    Ishaaya A A, Davidson N, Friesem A A 2005 Opt. Express 13 4952

    [6]

    Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N, Hara T 2008 J. Opt. Soc. Am. A 25 1642

    [7]

    Kuga T, Torii Y, Shiokawa N, Hirano T 1997 Phys. Rev. Lett. 78 4713

    [8]

    Arlt J, Hitomi T, Dholakia K 2000 Appl. Phys. B 71 549

    [9]

    Bradshaw D, Andrews D 2005 Opt. Lett. 30 3039

    [10]

    Jarutis V, Paskauskas R, Stabinis A 2000 Opt. Commun. 184 105

    [11]

    Simon R, Agarwal G S 2000 Opt. Lett. 25 1313

    [12]

    Seshadri S R 2002 Opt. Lett. 27 1872

    [13]

    Orlov S, Stabinis A 2003 Opt. Commun. 226 97

    [14]

    Mei Z R, Zhao D M 2004 J. Opt. Soc. Am. A 21 2375

    [15]

    Mei Z R, Zhao D M, Gu J G 2004 Opt. Commun. 240 337

    [16]

    Mei Z R, Zhao D M 2004 J. Opt. A: Pure Appl. Opt. 6 1005

    [17]

    Sheppard C J R 2009 Opt. Express 17 3690

    [18]

    Takenaka T, Yokota M, Fukumitsu O1985 J. Opt. Soc. Am. A 2 826

    [19]

    Duan K L, Wang B Z, Lü B D 2005 J. Opt. Soc. Am. A 22 1976

    [20]

    Mei Z R, Zhao D M 2007 Opt. Express 15 11942

    [21]

    Zhou G Q 2008 Opt. Laser Technol. 40 930

    [22]

    Zhou G Q 2006 Opt. Lett. 31 2616

    [23]

    Zhou G Q 2010 High Power Laser and Particle Beams 22 1187 (in Chinese)[周国泉 2010 强激光与粒子束 22 1187]

    [24]

    Zhou G Q 2005 Acta Phys. Sin. 54 4710 ( in Chinese) [周国泉 2005 物理学报 54 4710]

    [25]

    Kang X P, Lü B D 2006 Acta Phys. Sin. 55 4564 (in Chinese) [康水平, 吕百达 2006 物理学报 55 4564]

    [26]

    Mart′?nez-Herrero R, Mej′ias P M, Bosch S, Carnicer A 2001 J. Opt. Soc. Am. A 18 1678

    [27]

    Deng D M, Guo Q 2007 Opt. Lett. 32 2711

    [28]

    Tang H Q, Li X G, Zhou G Q, Zhu K C 2009 Opt. Commun. 282 478

    [29]

    Carter W H 1972 J. Opt. Soc. Am. 62 1195

    [30]

    Gradshteyn I S, Ryzhik I M 1980 Table of integrals, series, and products (New York: Academic Press)

  • [1]

    Kogelnik H, Li T 1966 Proc. IEEE 54 1312

    [2]

    Tamm C 1988 Phys. Rev. A 38 5960

    [3]

    He H, Heckenberg N R, Rubinsztein-Dunlop H 1995 J. Mod. Opt. 42 217

    [4]

    Hasegawa T, Shimizu T 1999 Opt. Commun. 160 103

    [5]

    Ishaaya A A, Davidson N, Friesem A A 2005 Opt. Express 13 4952

    [6]

    Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N, Hara T 2008 J. Opt. Soc. Am. A 25 1642

    [7]

    Kuga T, Torii Y, Shiokawa N, Hirano T 1997 Phys. Rev. Lett. 78 4713

    [8]

    Arlt J, Hitomi T, Dholakia K 2000 Appl. Phys. B 71 549

    [9]

    Bradshaw D, Andrews D 2005 Opt. Lett. 30 3039

    [10]

    Jarutis V, Paskauskas R, Stabinis A 2000 Opt. Commun. 184 105

    [11]

    Simon R, Agarwal G S 2000 Opt. Lett. 25 1313

    [12]

    Seshadri S R 2002 Opt. Lett. 27 1872

    [13]

    Orlov S, Stabinis A 2003 Opt. Commun. 226 97

    [14]

    Mei Z R, Zhao D M 2004 J. Opt. Soc. Am. A 21 2375

    [15]

    Mei Z R, Zhao D M, Gu J G 2004 Opt. Commun. 240 337

    [16]

    Mei Z R, Zhao D M 2004 J. Opt. A: Pure Appl. Opt. 6 1005

    [17]

    Sheppard C J R 2009 Opt. Express 17 3690

    [18]

    Takenaka T, Yokota M, Fukumitsu O1985 J. Opt. Soc. Am. A 2 826

    [19]

    Duan K L, Wang B Z, Lü B D 2005 J. Opt. Soc. Am. A 22 1976

    [20]

    Mei Z R, Zhao D M 2007 Opt. Express 15 11942

    [21]

    Zhou G Q 2008 Opt. Laser Technol. 40 930

    [22]

    Zhou G Q 2006 Opt. Lett. 31 2616

    [23]

    Zhou G Q 2010 High Power Laser and Particle Beams 22 1187 (in Chinese)[周国泉 2010 强激光与粒子束 22 1187]

    [24]

    Zhou G Q 2005 Acta Phys. Sin. 54 4710 ( in Chinese) [周国泉 2005 物理学报 54 4710]

    [25]

    Kang X P, Lü B D 2006 Acta Phys. Sin. 55 4564 (in Chinese) [康水平, 吕百达 2006 物理学报 55 4564]

    [26]

    Mart′?nez-Herrero R, Mej′ias P M, Bosch S, Carnicer A 2001 J. Opt. Soc. Am. A 18 1678

    [27]

    Deng D M, Guo Q 2007 Opt. Lett. 32 2711

    [28]

    Tang H Q, Li X G, Zhou G Q, Zhu K C 2009 Opt. Commun. 282 478

    [29]

    Carter W H 1972 J. Opt. Soc. Am. 62 1195

    [30]

    Gradshteyn I S, Ryzhik I M 1980 Table of integrals, series, and products (New York: Academic Press)

  • [1] 崔学才, 连校许, 吕百达. 拉盖尔-高斯光束傍轴度的变化. 物理学报, 2011, 60(10): 104203. doi: 10.7498/aps.60.104203
    [2] 陆世专, 游开明, 陈列尊, 王友文, 杨辉, 戴志平. 被圆相位片衍射的空心高斯光束的远场矢量结构特征. 物理学报, 2012, 61(23): 234201. doi: 10.7498/aps.61.234201
    [3] 季小玲, 李晓庆. 高斯-谢尔模型列阵光束的远场发散角和远场辐射强度. 物理学报, 2009, 58(7): 4624-4629. doi: 10.7498/aps.58.4624
    [4] 周小为, 付绍军, 任煜轩, 李银妹, 吴建光, 孙晴, 王自强. 相位片角向衍射产生拉盖尔-高斯光束的实验研究. 物理学报, 2010, 59(6): 3930-3935. doi: 10.7498/aps.59.3930
    [5] 陆璐, 季小玲, 邓金平, 马媛. 非Kolmogorov大气湍流对高斯列阵光束扩展的影响. 物理学报, 2014, 63(1): 014207. doi: 10.7498/aps.63.014207
    [6] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解. 物理学报, 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [7] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [8] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究. 物理学报, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [9] 欧军, 江月松, 邵宇伟, 屈晓声, 华厚强, 闻东海. 均匀椭球粒子对拉盖尔-高斯光束的散射特性研究. 物理学报, 2013, 62(11): 114201. doi: 10.7498/aps.62.114201
    [10] 江月松, 王帅会, 欧军, 唐华. 基于拉盖尔-高斯光束的通信系统在非Kolmogorov湍流中传输的系统容量. 物理学报, 2013, 62(21): 214201. doi: 10.7498/aps.62.214201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1469
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-22
  • 修回日期:  2011-03-29
  • 刊出日期:  2012-01-20

线偏振拉盖尔-高斯光束的远场发散特性

  • 1. 浙江农林大学理学院, 临安 311300
    基金项目: 

    国家自然科学基金(批准号: 61178016)资助的课题.

摘要: 利用稳相法和矢量结构理论, 导出了线偏振拉盖尔-高斯光束的矢量结构项TE项和TM项在远场的解析表达式. 进而利用TE项和TM项的远场能流分布, 给出了TE项和TM项的功率占总功率比例的度量式,同时还给出了线偏振拉盖尔-高斯光束、TE项和TM项三者远场发散角的解析式以及三者远场发散角间的关系式. 所得到的公式不仅适用于傍轴情形,而且还适用于非傍轴情形. 通过数值计算, 分析了TE项和TM项在远场的功率占总功率的比例与参数f和模数间的依赖关系;还分析了拉盖尔-高斯光束、TE项和TM项的远场发散角随参数f、模数和线偏振角的变化关系.这一研究从矢量结构本性揭示了线偏振拉盖尔-高斯光束的远场发散特性, 丰富了对其传输特性的认识.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回