搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时离子探测器塑料闪烁体性能的实验研究

徐妙华 李红伟 刘峰 刘必成 杜飞 张璐 苏鲁宁 李英骏 李玉同 陈佳洱 张杰

实时离子探测器塑料闪烁体性能的实验研究

徐妙华, 李红伟, 刘峰, 刘必成, 杜飞, 张璐, 苏鲁宁, 李英骏, 李玉同, 陈佳洱, 张杰
PDF
导出引用
导出核心图
  • 利用静电离子加速器对实时离子探测器塑料闪烁体的特性 (包括灵敏度、动态范围、能量响应, 及空间分辨等)进行了实验研究,并对闪烁体探测器与其他传统的离子探测器的特性进行了比较. 对闪烁体在激光等离子体实验的离子束诊断中的可能应用进行了探讨.塑料闪烁体的应用可满足高重复频率激光等离子体离子加速实验高效率运行的要求,为实验研究提供强有力的支持.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 10905092)、国家自然科学基金(批准号: 10925421, 11135012, 10974250, 10935002)和中央高校基本科研业务费专项资金资助的课题.
    [1]

    Key M H, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440

    [2]

    Romagnani L, Fuchs J, Borghesi M, Antici P, Audebert P, Ceccherini F, Cowan T, Grismayer T, Kar S, Macchi A, Mora P, Pretzler G, Schiavi A, Toncian A, Willi O 2005 Phys. Rev. Lett. 95 195001

    [3]

    Borghesi M, Fuchs J, Bulanov S V, MacKinnon A J, Patel P K, Roth M 2006 Fusion Sci. Technol. 49 412

    [4]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2006 Nature 439 441

    [5]

    Toncian T, Borghesi M, Fuchs J, d'Humiéres E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410

    [6]

    Chen M, Pukhov A, Yu T P, Sheng Z M 2009 Phys. Rev. Lett. 103 24801

    [7]

    Xu M H, Li Y T, Yuan X H, Yu Q Z, Wang S J, Zhao W, Wen X L, Wang G C, Jiao C Y, He Y L, Zhang S G, Wang X X, Huang W Z, Gu Y Q, Zhang J 2006 Phys. Plasmas 13 104507

    [8]

    Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M, Hegelich M, Karsch S, Parks P, Roth M, Sentoku Y, Stephens R, Campbell E M 2003 Phys. Rev. Lett. 91 255002

    [9]

    Mancić A, Fuchs J, Antici P, Gaillard S A, Audebert P 2008 Rev. Sci. Instrum. 79 073301

    [10]

    Harres K, Schollmeier M, Brambrink E, Audebert P, Blazević A, Flippo K, Gautier D C, Geiβsel M, Hegelich B M, Nürnberg F, Schreiber J, Wahl H, Roth M 2008 Rev. Sci. Instrum. 79 093306

    [11]

    Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775

    [12]

    Arikawa Y, Nakai M, Watari T, Hosoda H, Takeda K, Fujiwara T, Furukawa Y, Norimatsu T, Shiraga H, Sarukura N, Azechi H 2008 J. Phys.: Conference Series 112 032082

    [13]

    Mooa S P, Wong C S 1995 Laser and Particle Beams 13 129

    [14]

    Ting A, Moore C I, Krushelnick K, Manka C, Esarey E, Sprangle P, Hubbard R, Burris H R, Fischer R, Bainec M 1997 Phys. Plasmas 4 1889

    [15]

    Safronov K V, Gavrilov D S, Mokicheva E S, Potapov A V, Chefonov O V 2008 Instrum. Exp. Tech. 51 857

    [16]

    Wang J Y, Gong L H, Yang X J, Gong J H, Lu X C 2008 Atomic Energy Sci. Techonl. 42 229 (in Chinese) [王建勇, 巩玲华, 杨向军, 龚建华, 路祥臣 2008 原子能科学技术 42 229]

    [17]

    Gaillard S, Fuchs J, Renard-LeGalloudee N, Cowan T E 2006 Phys. Rev. Lett. 96 249201

    [18]

    Gales S G, Bentley C D 2004 Rev. Sci. Instrum. 75 4001

    [19]

    http: // online1. ispcorp. com/_layouts/Gafchromic/index. html

    [20]

    Ghergherehchi M, Afarideh H, Ghannadi M, Mohammadzadeh A, Aslani G R Boghrati B 2010 J. Radiat. Res. 51 423

    [21]

    Harasimowicz J, Cosentino L, Finocchiaro P, Pappalardo A, Welsch C P 2010 Rev. Sci. Instrum. 81 103302

    [22]

    Ziegler J F, Biersack J P, Littmark U 1996 The Stopping and Range of Ions in Solids (New York: Pergamon)

    [23]

    O'Rielly G V, Kolb N R, Pywell R E 1996 Nucl. Instr. Meth. Phys. Res. A 368 745

    [24]

    Saraf S K, Brient C E, Egun P M, Grimes S M, Mishra V, Pedroni R S 1988 Nucl. Instr. Meth. Phys. Res. A 268 200

    [25]

    Xu M H, Li H W, Liu B C, Liu F, Su L N, Du F, Zhang L, Zheng Y, Ma J L, Neely D, McKenna P, Wang Z H, Wei Z Y, Yan X Q, Li Y T, Li Y J, Zhang J 2011 Chin. Phys. Lett. 28 095203

  • [1]

    Key M H, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440

    [2]

    Romagnani L, Fuchs J, Borghesi M, Antici P, Audebert P, Ceccherini F, Cowan T, Grismayer T, Kar S, Macchi A, Mora P, Pretzler G, Schiavi A, Toncian A, Willi O 2005 Phys. Rev. Lett. 95 195001

    [3]

    Borghesi M, Fuchs J, Bulanov S V, MacKinnon A J, Patel P K, Roth M 2006 Fusion Sci. Technol. 49 412

    [4]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2006 Nature 439 441

    [5]

    Toncian T, Borghesi M, Fuchs J, d'Humiéres E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410

    [6]

    Chen M, Pukhov A, Yu T P, Sheng Z M 2009 Phys. Rev. Lett. 103 24801

    [7]

    Xu M H, Li Y T, Yuan X H, Yu Q Z, Wang S J, Zhao W, Wen X L, Wang G C, Jiao C Y, He Y L, Zhang S G, Wang X X, Huang W Z, Gu Y Q, Zhang J 2006 Phys. Plasmas 13 104507

    [8]

    Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M, Hegelich M, Karsch S, Parks P, Roth M, Sentoku Y, Stephens R, Campbell E M 2003 Phys. Rev. Lett. 91 255002

    [9]

    Mancić A, Fuchs J, Antici P, Gaillard S A, Audebert P 2008 Rev. Sci. Instrum. 79 073301

    [10]

    Harres K, Schollmeier M, Brambrink E, Audebert P, Blazević A, Flippo K, Gautier D C, Geiβsel M, Hegelich B M, Nürnberg F, Schreiber J, Wahl H, Roth M 2008 Rev. Sci. Instrum. 79 093306

    [11]

    Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775

    [12]

    Arikawa Y, Nakai M, Watari T, Hosoda H, Takeda K, Fujiwara T, Furukawa Y, Norimatsu T, Shiraga H, Sarukura N, Azechi H 2008 J. Phys.: Conference Series 112 032082

    [13]

    Mooa S P, Wong C S 1995 Laser and Particle Beams 13 129

    [14]

    Ting A, Moore C I, Krushelnick K, Manka C, Esarey E, Sprangle P, Hubbard R, Burris H R, Fischer R, Bainec M 1997 Phys. Plasmas 4 1889

    [15]

    Safronov K V, Gavrilov D S, Mokicheva E S, Potapov A V, Chefonov O V 2008 Instrum. Exp. Tech. 51 857

    [16]

    Wang J Y, Gong L H, Yang X J, Gong J H, Lu X C 2008 Atomic Energy Sci. Techonl. 42 229 (in Chinese) [王建勇, 巩玲华, 杨向军, 龚建华, 路祥臣 2008 原子能科学技术 42 229]

    [17]

    Gaillard S, Fuchs J, Renard-LeGalloudee N, Cowan T E 2006 Phys. Rev. Lett. 96 249201

    [18]

    Gales S G, Bentley C D 2004 Rev. Sci. Instrum. 75 4001

    [19]

    http: // online1. ispcorp. com/_layouts/Gafchromic/index. html

    [20]

    Ghergherehchi M, Afarideh H, Ghannadi M, Mohammadzadeh A, Aslani G R Boghrati B 2010 J. Radiat. Res. 51 423

    [21]

    Harasimowicz J, Cosentino L, Finocchiaro P, Pappalardo A, Welsch C P 2010 Rev. Sci. Instrum. 81 103302

    [22]

    Ziegler J F, Biersack J P, Littmark U 1996 The Stopping and Range of Ions in Solids (New York: Pergamon)

    [23]

    O'Rielly G V, Kolb N R, Pywell R E 1996 Nucl. Instr. Meth. Phys. Res. A 368 745

    [24]

    Saraf S K, Brient C E, Egun P M, Grimes S M, Mishra V, Pedroni R S 1988 Nucl. Instr. Meth. Phys. Res. A 268 200

    [25]

    Xu M H, Li H W, Liu B C, Liu F, Su L N, Du F, Zhang L, Zheng Y, Ma J L, Neely D, McKenna P, Wang Z H, Wei Z Y, Yan X Q, Li Y T, Li Y J, Zhang J 2011 Chin. Phys. Lett. 28 095203

  • [1] 何民卿, 董全力, 翁苏明, 陈民, 武慧春, 盛政明, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [2] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [3] 刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰. 超短超强激光与薄膜靶相互作用中不同价态碳离子的来源. 物理学报, 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [4] 欧阳晓平, 张建福, 张忠兵, 马彦良, 张显鹏, 张小东, 潘洪波, 张国光, 王志强, 陈 军, 骆海龙, 刘毅娜. ST-401薄塑料闪烁体中子能量响应测量技术研究. 物理学报, 2006, 55(5): 2165-2169. doi: 10.7498/aps.55.2165
    [5] 矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋. 超强激光与固体气体复合靶作用产生高能氦离子. 物理学报, 2017, 66(8): 085201. doi: 10.7498/aps.66.085201
    [6] 郑君, 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 王兆华, 盛政明, 魏志义, 张杰, 孟立民, 李英骏. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [7] 陈黎明, Kazuhisa Nakajima, Toshi Tajima, 徐妙华, 李玉同, 刘运全, 王兆华, 魏志义, 张 杰, 远晓辉, 赵 卫. 超短脉冲强激光与固体靶相互作用中Kα射线的实验研究. 物理学报, 2007, 56(1): 353-358. doi: 10.7498/aps.56.353
    [8] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [9] 苍宇, 张杰, 王薇. 对超短脉冲激光与固体密度等离子体相互作用动力学过程的研究. 物理学报, 2001, 50(9): 1742-1746. doi: 10.7498/aps.50.1742
    [10] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [11] 盛政明, 马锦秀, 徐至展, 余玮. 电子等离子体波对超短脉冲激光传播过程的作用. 物理学报, 1992, 41(11): 1796-1805. doi: 10.7498/aps.41.1796
    [12] 王玉晓, 谷渝秋, 刘红杰, 吴玉迟, 温贤伦, 焦春晔, 滕建, 何颖玲, 朱斌, 王磊, 王剑. 超短超强激光与稀薄等离子体相互作用中后孤立子的观测. 物理学报, 2009, 58(2): 1100-1104. doi: 10.7498/aps.58.1100
    [13] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响. 物理学报, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [14] 陈正林, R. Kodama, 张 翼, 李玉同, 张 杰. 超强激光与等离子体相互作用产生中子的计算. 物理学报, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [15] 徐至展, 马锦秀. 双频强激光与等离子体相互作用中的双稳态效应. 物理学报, 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [16] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用. 物理学报, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [17] 余玮, 徐至展, 马锦秀, 陈荣清. 等离子体拍频波加速器中三波相互作用的时间发展. 物理学报, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [18] 赖国俊, 季沛勇. 基于激光等离子体的光子加速. 物理学报, 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [19] 余 玮, 盛政明, 张 杰. 强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕获. 物理学报, 2003, 52(1): 125-134. doi: 10.7498/aps.52.125
    [20] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 物理学报, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1816
  • PDF下载量:  829
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-22
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-20

实时离子探测器塑料闪烁体性能的实验研究

  • 1. 中国矿业大学(北京)理学院, 北京 100083;
  • 2. 中国科学院物理研究所北京凝聚态物理国家实验室, 北京 100190;
  • 3. 北京大学核物理与核技术国家重点实验室, 北京 100871;
  • 4. 上海交通大学物理系, 上海 200240
    基金项目: 

    国家自然科学基金青年科学基金(批准号: 10905092)、国家自然科学基金(批准号: 10925421, 11135012, 10974250, 10935002)和中央高校基本科研业务费专项资金资助的课题.

摘要: 利用静电离子加速器对实时离子探测器塑料闪烁体的特性 (包括灵敏度、动态范围、能量响应, 及空间分辨等)进行了实验研究,并对闪烁体探测器与其他传统的离子探测器的特性进行了比较. 对闪烁体在激光等离子体实验的离子束诊断中的可能应用进行了探讨.塑料闪烁体的应用可满足高重复频率激光等离子体离子加速实验高效率运行的要求,为实验研究提供强有力的支持.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回