搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮离子轰击能量对ta-C:N薄膜结构的影响

韩亮 邵鸿翔 何亮 陈仙 赵玉清

氮离子轰击能量对ta-C:N薄膜结构的影响

韩亮, 邵鸿翔, 何亮, 陈仙, 赵玉清
PDF
导出引用
导出核心图
  • 利用磁过滤真空阴极电弧技术制备了sp3键含量不小于80%的四面体非晶碳薄膜(ta-C), 然后通过氮离子束改性技术制备了氮掺杂的四面体非晶碳(ta-C:N)薄膜. 利用Raman光谱和X射线光电子能谱对薄膜结构的分析,研究了氮离子轰击能量对ta-C:N薄膜结构的影响. 氮离子对ta-C薄膜的轰击,形成了氮掺杂的ta-C:N薄膜. 氮离子轰击诱导了薄膜中sp3键向sp2键转化, 以及CN键的形成.在ta-C:N薄膜中,氮掺杂的深度和浓度随着氮离子能量的增大而增大. ta-C:N薄膜中sp2键的含量和sp2键团簇的尺寸随着氮离子轰击能量的增大而增加; 在ta-C:N薄膜中, CN键主要由C–N键和C=N键构成, C–N 键的含量随着氮离子轰击能量的增大而减小,但是C=N 键含量随着氮离子轰击能量的增大而增大.在ta-C:N薄膜中不含有CN键结构.
    • 基金项目: 陕西省13115科技创新工程重大科技专项(批准号: 2009DKG-29)和中央高校基本 科研业务费专项资金资助的课题.
    [1]

    Ander A, Ander S, Brown I G 1995 Plasma Source Sci. Technol. 4 1

    [2]

    Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1151 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 物理学报 53 1151]

    [3]

    Liang F, Yan X J 1999 Acta Phys. Sin. 48 1095 (in Chinese) [梁风, 严学俭 1999 物理学报 48 1095]

    [4]

    Satyanarayana B S, Hart A, Miline W I, Robertson J 1998 Diamond Relat. Mater. 7 656

    [5]

    Gao W, Gong S L, Zhu J Q, Ma G J 2011 Acta Phys. Sin. 60 027104 (in Chinese) [高巍, 巩水利, 朱嘉琦, 马国佳 2011 物理学报 60 027104]

    [6]

    Panwar O S, Khan M A, Satyanarayana B S, Bhattacharyya R, Mehta B R, Kumar S, Ishpal I 2010 J. Vac. Sci. Technol. B 28 411

    [7]

    Panwar O S, Alim M K, Kumar M, Shivaprasad S M, Satyanarayana B S, Dixit P N, Bhattacharyya R, Khan M Y 2008 Thin Solid Films 516 2331

    [8]

    Panwar O S, Deb B, Satyanarayana B S, Khan M A, Bhattacharyya R, Pal A K 2005 Thin Solid Films 472 180

    [9]

    Polo M C, Andujar J L, Hart A, Robertson J, Milne W I 2000 Diamond Relat. Mater. 9 663

    [10]

    Panwar O S, Alim K M, Kumar S, Basu A, Mehta B R, Kumar S, Ishpal I 2010 Surf. Coat. Technol. 205 2126

    [11]

    Prawer S, Nugent K W, Lifshitz Y 1996 Diamond Relat. Mater. 5 433

    [12]

    Zhang X W, Ke N, Cheung W Y 2003 Diamond Relat. Mater. 12 1

    [13]

    Wixom M K 1990 J. Am. Ceram. Soc. 73 1973

    [14]

    Cheng Y H, Tay B K, Lau S P 2001 Diamond Relat. Mater. 10 2137

    [15]

    Colthup N B, Daly L H, Wiberly S E 1990 Introduction to Infrared and Raman Spectroscopy (3rd Ed.) (New York: Academic Press)

    [16]

    Chowdhury A K M S, Cameron D C, Hashmi M S J 1998 Thin Solid Films 332 62

    [17]

    Kaufman J H, Metin S, Saperstein D D 1989 Phys. Rev. B 39 13053

    [18]

    Merel P, Tabbal M, Chaker M, Moisa S, Margot 1998 J. Appl. Surf. Sci. 136 105

    [19]

    Ripalda J M, Roman E, Galan L 2003 J. Chem. Phys. 118 3748

    [20]

    Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039

    [21]

    Zhu J Q, Han J C, Han X, Schiaberginaki H, Wang J Z 2008 J. Appl. Phys. 104 013512

    [22]

    Das D, Chen K H, Chattopadhyay S, Chattopadhyay S Chen L C 2002 J. Appl. Phys. 91 4944

    [23]

    Papakonstantinou P, Lemoine P 2001 J. Phys. Condens. Matter 13 2971

    [24]

    Ronning C, Feldermann H, Merk R, Hofsäss H 1998 Phys. Rev. B 58 2207

    [25]

    Hellgren N, Guo J, Sathe C, Agui A, Nordgren J, Luo Y, \AAgren H, Sundgren J E 2001 Appl. Phys. Lett. 79 4348

    [26]

    Hofsäss H, Eldermann H F, Merk R, Sebastian M, Ronning C 1998 J. Appl. Phys. A 66 153

    [27]

    Majumdar A, Schäfer J, Mishra P, Ghose D, Meichsner J, Hippler R 2007 Surf. Coat. Technol. 201 6437

    [28]

    McCann R, Roy S S, Papakonstantinou P, Bain M F, Gamble H S, McLaughlin J A 2005 Thin Solid Films 482 34

    [29]

    Bhattacharyya S, Hong J, Turban G 1998 J. Appl. Phys. 83 3922

    [30]

    Kaukonen M, Nieminen R M, Poykko S, Seitsonen A P 1999 Phys. Rev. Lett. 83 5346

  • [1]

    Ander A, Ander S, Brown I G 1995 Plasma Source Sci. Technol. 4 1

    [2]

    Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1151 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 物理学报 53 1151]

    [3]

    Liang F, Yan X J 1999 Acta Phys. Sin. 48 1095 (in Chinese) [梁风, 严学俭 1999 物理学报 48 1095]

    [4]

    Satyanarayana B S, Hart A, Miline W I, Robertson J 1998 Diamond Relat. Mater. 7 656

    [5]

    Gao W, Gong S L, Zhu J Q, Ma G J 2011 Acta Phys. Sin. 60 027104 (in Chinese) [高巍, 巩水利, 朱嘉琦, 马国佳 2011 物理学报 60 027104]

    [6]

    Panwar O S, Khan M A, Satyanarayana B S, Bhattacharyya R, Mehta B R, Kumar S, Ishpal I 2010 J. Vac. Sci. Technol. B 28 411

    [7]

    Panwar O S, Alim M K, Kumar M, Shivaprasad S M, Satyanarayana B S, Dixit P N, Bhattacharyya R, Khan M Y 2008 Thin Solid Films 516 2331

    [8]

    Panwar O S, Deb B, Satyanarayana B S, Khan M A, Bhattacharyya R, Pal A K 2005 Thin Solid Films 472 180

    [9]

    Polo M C, Andujar J L, Hart A, Robertson J, Milne W I 2000 Diamond Relat. Mater. 9 663

    [10]

    Panwar O S, Alim K M, Kumar S, Basu A, Mehta B R, Kumar S, Ishpal I 2010 Surf. Coat. Technol. 205 2126

    [11]

    Prawer S, Nugent K W, Lifshitz Y 1996 Diamond Relat. Mater. 5 433

    [12]

    Zhang X W, Ke N, Cheung W Y 2003 Diamond Relat. Mater. 12 1

    [13]

    Wixom M K 1990 J. Am. Ceram. Soc. 73 1973

    [14]

    Cheng Y H, Tay B K, Lau S P 2001 Diamond Relat. Mater. 10 2137

    [15]

    Colthup N B, Daly L H, Wiberly S E 1990 Introduction to Infrared and Raman Spectroscopy (3rd Ed.) (New York: Academic Press)

    [16]

    Chowdhury A K M S, Cameron D C, Hashmi M S J 1998 Thin Solid Films 332 62

    [17]

    Kaufman J H, Metin S, Saperstein D D 1989 Phys. Rev. B 39 13053

    [18]

    Merel P, Tabbal M, Chaker M, Moisa S, Margot 1998 J. Appl. Surf. Sci. 136 105

    [19]

    Ripalda J M, Roman E, Galan L 2003 J. Chem. Phys. 118 3748

    [20]

    Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039

    [21]

    Zhu J Q, Han J C, Han X, Schiaberginaki H, Wang J Z 2008 J. Appl. Phys. 104 013512

    [22]

    Das D, Chen K H, Chattopadhyay S, Chattopadhyay S Chen L C 2002 J. Appl. Phys. 91 4944

    [23]

    Papakonstantinou P, Lemoine P 2001 J. Phys. Condens. Matter 13 2971

    [24]

    Ronning C, Feldermann H, Merk R, Hofsäss H 1998 Phys. Rev. B 58 2207

    [25]

    Hellgren N, Guo J, Sathe C, Agui A, Nordgren J, Luo Y, \AAgren H, Sundgren J E 2001 Appl. Phys. Lett. 79 4348

    [26]

    Hofsäss H, Eldermann H F, Merk R, Sebastian M, Ronning C 1998 J. Appl. Phys. A 66 153

    [27]

    Majumdar A, Schäfer J, Mishra P, Ghose D, Meichsner J, Hippler R 2007 Surf. Coat. Technol. 201 6437

    [28]

    McCann R, Roy S S, Papakonstantinou P, Bain M F, Gamble H S, McLaughlin J A 2005 Thin Solid Films 482 34

    [29]

    Bhattacharyya S, Hong J, Turban G 1998 J. Appl. Phys. 83 3922

    [30]

    Kaukonen M, Nieminen R M, Poykko S, Seitsonen A P 1999 Phys. Rev. Lett. 83 5346

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2025
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-16
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

氮离子轰击能量对ta-C:N薄膜结构的影响

  • 1. 西安电子科技大学技术物理学院, 西安 710071;
  • 2. 洛阳理工学院, 洛阳 471023;
  • 3. 西安交通大学电子与信息工程学院, 西安 710049
    基金项目: 

    陕西省13115科技创新工程重大科技专项(批准号: 2009DKG-29)和中央高校基本 科研业务费专项资金资助的课题.

摘要: 利用磁过滤真空阴极电弧技术制备了sp3键含量不小于80%的四面体非晶碳薄膜(ta-C), 然后通过氮离子束改性技术制备了氮掺杂的四面体非晶碳(ta-C:N)薄膜. 利用Raman光谱和X射线光电子能谱对薄膜结构的分析,研究了氮离子轰击能量对ta-C:N薄膜结构的影响. 氮离子对ta-C薄膜的轰击,形成了氮掺杂的ta-C:N薄膜. 氮离子轰击诱导了薄膜中sp3键向sp2键转化, 以及CN键的形成.在ta-C:N薄膜中,氮掺杂的深度和浓度随着氮离子能量的增大而增大. ta-C:N薄膜中sp2键的含量和sp2键团簇的尺寸随着氮离子轰击能量的增大而增加; 在ta-C:N薄膜中, CN键主要由C–N键和C=N键构成, C–N 键的含量随着氮离子轰击能量的增大而减小,但是C=N 键含量随着氮离子轰击能量的增大而增大.在ta-C:N薄膜中不含有CN键结构.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回