搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5(6)羧基荧光素敏化TiO2纳米粒子的光致电子转移的荧光特性研究

蒋礼林 宋云飞 刘伟龙 于国洋 何兴 王阳 吴红琳 杨延强

5(6)羧基荧光素敏化TiO2纳米粒子的光致电子转移的荧光特性研究

蒋礼林, 宋云飞, 刘伟龙, 于国洋, 何兴, 王阳, 吴红琳, 杨延强
PDF
导出引用
  • 通过水解TiCl4制备了锐钛矿结构TiO2纳米粒子, 并用时间分辨荧光光谱研究了5(6)CFL(5(6)-Carboxyfluorescein, 简称5(6)CFL)染料敏化TiO2纳米粒子体系的光致电子转移动力学. 5(6)CFL染料敏化TiO2纳米粒子能形成电荷转移复合物, 这归因于染料分子的激发电子态波函数(D*)与电荷分离态波函数(D+ +e-)之间的耦合作用. 当激发5(6)CFL染料敏化TiO2纳米粒子体系时, 电子以两种不同方式注入TiO2纳米粒子导带: 第一, 通过5(6)CFL染料分子的激发态注入; 第二, 从电荷转移复合物(5(6)CFL/TiO2)直接注入. 时间分辨荧光光谱表明, 在水溶液中纯5(6)CFL染料的荧光以寿命为1=41 ps (74.4%) 和2=3.22 ns (25.6%) 的双e指数衰减, 而5(6)CFL染料敏化TiO2纳米粒子体系的荧光分别以时间常数为1=44 ps (90.4%),2=478 ps (8.6%) 和3=2.41 ns (1.0%) 的三e指数衰减. 本文的研究工作能够为染料敏化太阳能电池的光致电子转移机理提供有价值的参考.
    • 基金项目: 国家自然科学基金(批准号: 20973050)资助的课题.
    [1]

    West W, Gilman P B Jr 1977 The Theory of the Photographic Process (New York: Macmillan) p251

    [2]

    Nazeerudin M K, Kay A, Rodicio I, Humphrey-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M 1993 J. Am. Chem. Soc. 115 6382

    [3]

    Duncan W R, Prezhdo O V 2007 Annu. Rev. Phys. Chem. 58 143

    [4]

    Anderson N A, Lian T Q 2005 Annu. Rev. Phys.Chem. 5 491

    [5]

    Zeng L Y, Dai S Y, Wang K J, Shi C W, Kong F T, Hu L H, Pan X 2005 Acta Pyhs. Sin. 54 0053 (in Chinese) [曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘旭 2005 物理学报 54 0053]

    [6]

    Xu W W, Dai S Y, Fang X Q, Hu L H, Kong F T, Pan X, Wang K J 2005 Acta Pyhs. Sin. 54 5943 (in Chinese) [徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘旭, 王孔嘉 2005 物理学报 54 5943]

    [7]

    Liu W Q, Kou D X, Hu L H, Huang Y, Jiang N Q, Dai S Y 2010 Acta Pyhs. Sin. 59 5141 (in Chinese) [刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元, 2010 物理学报 59 5141]

    [8]

    Siders P, Marcus R A 1981 J. Am. Chem. Soc. 103 748

    [9]

    Huber R, Moser J E, Grätzel M, Wachtveitl J 2002 J. Phys. Chem. B 106 6494

    [10]

    Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang F 2004 J. Am. Chem. Soc. 126 14943

    [11]

    Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K, Grätzel M 2008 Thin Solid Films 516 4613

    [12]

    Ko S H, Lee D, Kang H W, Nam K H, Yeo J Y, Hong S J, Grigoropoulos C P, Sung H J 2011 Nano Lett. 11 666

    [13]

    Peng W Q, Yanagida M, Han L Y, Ahmed S 2011 Nanotechnology 22 275709

    [14]

    Hardin B E, Gaynor W, Ding I K, Rim S B, Peumans P, McGehee M D 2011 Organic Electronics 12 875

    [15]

    Gao F F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M 2008 J. Am. Chem. Soc. 130 10720

    [16]

    Ito S, Zakeeruddin S M, Humphry-Baker R 2006 Adv. Mate. 18 1202

    [17]

    Ghosh H N, Asbury J B, Lian T Q 1998 J. Phys. Chem. B 102 6482

    [18]

    Ramakrishna G, Ghosh H N 2001 J. Phys. Chem. B 105 7000

    [19]

    Ghosh H N 1999 J. Phys. Chem. B 103 10382

    [20]

    Huber R, Spo1rlein S, Moser J E, Grä1tzel M, Wachtveitl J 2000 J. Phys. Chem. B 104 8995

    [21]

    Cherepy N J, Smestad G P, Grätzel M, Zhang J Z 1997 J. Phys. Chem. B 101 9342

    [22]

    Jayaweera P M, Kumarasinghe A R, Tennakone K 1999 J. Photochem.Photobiol. A 126 111

    [23]

    Ghosh H N, Asbury J B, Weng Y, Lian T Q 1998 J. Phys. Chem. B 102 10208

    [24]

    Lu H, Prieskorn J N, Hupp J T 1993 J. Am. Chem. Soc. 115 4927

    [25]

    Weng Y, Wang Y, Asbury J B, Ghosh H N, Lian T Q 2000 J. Phys. Chem. B 104 93

    [26]

    Mulliken R S, Person W B 1969 Molecular Complexes: a lecture and reprint volume (New York: Wiley)

    [27]

    Cohen-Tannoudji C 1977 Quantum Mechanics (New York: Wiley)

  • [1]

    West W, Gilman P B Jr 1977 The Theory of the Photographic Process (New York: Macmillan) p251

    [2]

    Nazeerudin M K, Kay A, Rodicio I, Humphrey-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M 1993 J. Am. Chem. Soc. 115 6382

    [3]

    Duncan W R, Prezhdo O V 2007 Annu. Rev. Phys. Chem. 58 143

    [4]

    Anderson N A, Lian T Q 2005 Annu. Rev. Phys.Chem. 5 491

    [5]

    Zeng L Y, Dai S Y, Wang K J, Shi C W, Kong F T, Hu L H, Pan X 2005 Acta Pyhs. Sin. 54 0053 (in Chinese) [曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘旭 2005 物理学报 54 0053]

    [6]

    Xu W W, Dai S Y, Fang X Q, Hu L H, Kong F T, Pan X, Wang K J 2005 Acta Pyhs. Sin. 54 5943 (in Chinese) [徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘旭, 王孔嘉 2005 物理学报 54 5943]

    [7]

    Liu W Q, Kou D X, Hu L H, Huang Y, Jiang N Q, Dai S Y 2010 Acta Pyhs. Sin. 59 5141 (in Chinese) [刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元, 2010 物理学报 59 5141]

    [8]

    Siders P, Marcus R A 1981 J. Am. Chem. Soc. 103 748

    [9]

    Huber R, Moser J E, Grätzel M, Wachtveitl J 2002 J. Phys. Chem. B 106 6494

    [10]

    Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang F 2004 J. Am. Chem. Soc. 126 14943

    [11]

    Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K, Grätzel M 2008 Thin Solid Films 516 4613

    [12]

    Ko S H, Lee D, Kang H W, Nam K H, Yeo J Y, Hong S J, Grigoropoulos C P, Sung H J 2011 Nano Lett. 11 666

    [13]

    Peng W Q, Yanagida M, Han L Y, Ahmed S 2011 Nanotechnology 22 275709

    [14]

    Hardin B E, Gaynor W, Ding I K, Rim S B, Peumans P, McGehee M D 2011 Organic Electronics 12 875

    [15]

    Gao F F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M 2008 J. Am. Chem. Soc. 130 10720

    [16]

    Ito S, Zakeeruddin S M, Humphry-Baker R 2006 Adv. Mate. 18 1202

    [17]

    Ghosh H N, Asbury J B, Lian T Q 1998 J. Phys. Chem. B 102 6482

    [18]

    Ramakrishna G, Ghosh H N 2001 J. Phys. Chem. B 105 7000

    [19]

    Ghosh H N 1999 J. Phys. Chem. B 103 10382

    [20]

    Huber R, Spo1rlein S, Moser J E, Grä1tzel M, Wachtveitl J 2000 J. Phys. Chem. B 104 8995

    [21]

    Cherepy N J, Smestad G P, Grätzel M, Zhang J Z 1997 J. Phys. Chem. B 101 9342

    [22]

    Jayaweera P M, Kumarasinghe A R, Tennakone K 1999 J. Photochem.Photobiol. A 126 111

    [23]

    Ghosh H N, Asbury J B, Weng Y, Lian T Q 1998 J. Phys. Chem. B 102 10208

    [24]

    Lu H, Prieskorn J N, Hupp J T 1993 J. Am. Chem. Soc. 115 4927

    [25]

    Weng Y, Wang Y, Asbury J B, Ghosh H N, Lian T Q 2000 J. Phys. Chem. B 104 93

    [26]

    Mulliken R S, Person W B 1969 Molecular Complexes: a lecture and reprint volume (New York: Wiley)

    [27]

    Cohen-Tannoudji C 1977 Quantum Mechanics (New York: Wiley)

  • [1] 封 伟, 易文辉, 徐友龙, 吴洪才, 高 潮. 可溶性聚噻吩甲烯包覆碳纳米管的三阶非线性光学响应. 物理学报, 2006, 55(7): 3736-3742. doi: 10.7498/aps.55.3736
    [2] 杨达林, 万梅香, 张镜文, 钱人元. 聚N-乙烯基咔唑-2,4,7,三硝基-9-芴酮电荷转移复合物薄膜的载流子迁移率. 物理学报, 1982, 31(12): 104-109. doi: 10.7498/aps.31.104-2
    [3] 吴国祯. Chevrel相MxMo6S8化合物电荷转移和Mo原子上4d轨道能级的分裂. 物理学报, 1981, 30(2): 172-177. doi: 10.7498/aps.30.172
    [4] 王治国, 陈宇光, 陈 鸿, 石云龙, 徐 靖. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [5] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
    [6] 郑杭, 方俊鑫. 碱卤晶体中的电荷转移型激子. 物理学报, 1986, 35(8): 1019-1028. doi: 10.7498/aps.35.1019
    [7] 王鹿霞, 常凯楠. 异质结电荷转移的密度矩阵理论近似研究. 物理学报, 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [8] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [9] 寇东星, 姜年权, 刘伟庆, 胡林华, 黄阳, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究. 物理学报, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [10] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [11] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [12] 屈军乐, 林子扬, 陈丹妮, 许改霞, 胡 涛, 郭宝平, 牛憨笨, 刘立新. 双光子激发时间分辨荧光光谱测量技术. 物理学报, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
    [13] 刘照军, 吴国祯. 亚乙基硫脲的表面增强拉曼极化率研究:电磁和电荷转移机制. 物理学报, 2006, 55(12): 6315-6319. doi: 10.7498/aps.55.6315
    [14] 贺博, 韦世强, 周克瑾, 崔明启, 陈之战, 施尔畏, 严成锋, 宋力昕, 刘学超, 黄维. Co掺杂ZnO薄膜的局域结构和电荷转移特性研究. 物理学报, 2009, 58(1): 498-504. doi: 10.7498/aps.58.498
    [15] 刘玲, 刘春雷, 王建国, 赵益清, 薛平. 氢离子与里德伯原子碰撞中的电荷转移过程. 物理学报, 2009, 58(5): 3248-3254. doi: 10.7498/aps.58.3248
    [16] 周均铭. In-Si(111)界面上的电荷转移及铟原子的表面电致迁移现象. 物理学报, 1983, 32(5): 640-647. doi: 10.7498/aps.32.640
    [17] 苗润才, 潘多海, 张鹏翔, 李秀英. 金属银表面-分子体系中的电荷转移效应. 物理学报, 1988, 37(11): 1870-1875. doi: 10.7498/aps.37.1870
    [18] 苗润才, 傅克德, 李向, 刘西社, 张长安. 金属银表面-分子体系中电荷转移效应的形成过程. 物理学报, 1991, 40(3): 454-458. doi: 10.7498/aps.40.454
    [19] 李白文, 周效信. 中等能量入射的质子,α粒子与氦原子碰撞的电荷转移. 物理学报, 1999, 48(8): 1426-1432. doi: 10.7498/aps.48.1426
    [20] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2796
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-20
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

5(6)羧基荧光素敏化TiO2纳米粒子的光致电子转移的荧光特性研究

  • 1. 哈尔滨工业大学物理系, 凝聚态科学与技术研究中心, 哈尔滨 150001;
  • 2. 贺州学院物理与电子信息工程系, 贺州 542800
    基金项目: 

    国家自然科学基金(批准号: 20973050)资助的课题.

摘要: 通过水解TiCl4制备了锐钛矿结构TiO2纳米粒子, 并用时间分辨荧光光谱研究了5(6)CFL(5(6)-Carboxyfluorescein, 简称5(6)CFL)染料敏化TiO2纳米粒子体系的光致电子转移动力学. 5(6)CFL染料敏化TiO2纳米粒子能形成电荷转移复合物, 这归因于染料分子的激发电子态波函数(D*)与电荷分离态波函数(D+ +e-)之间的耦合作用. 当激发5(6)CFL染料敏化TiO2纳米粒子体系时, 电子以两种不同方式注入TiO2纳米粒子导带: 第一, 通过5(6)CFL染料分子的激发态注入; 第二, 从电荷转移复合物(5(6)CFL/TiO2)直接注入. 时间分辨荧光光谱表明, 在水溶液中纯5(6)CFL染料的荧光以寿命为1=41 ps (74.4%) 和2=3.22 ns (25.6%) 的双e指数衰减, 而5(6)CFL染料敏化TiO2纳米粒子体系的荧光分别以时间常数为1=44 ps (90.4%),2=478 ps (8.6%) 和3=2.41 ns (1.0%) 的三e指数衰减. 本文的研究工作能够为染料敏化太阳能电池的光致电子转移机理提供有价值的参考.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回