搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯层间纳米摩擦性质的第一性原理研究

王建军 王飞 原鹏飞 孙强 贾瑜

引用本文:
Citation:

石墨烯层间纳米摩擦性质的第一性原理研究

王建军, 王飞, 原鹏飞, 孙强, 贾瑜

First-principles study of nanoscale friction between graphenes

Wang Jian-Jun, Wang Fei, Yuan Peng-Fei, Sun Qiang, Jia Yu
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算方法研究了纳米尺度下石墨烯层间摩擦现象, 探讨了对称和非对称两种情况下双层石墨烯层间沿不同方向的摩擦性质. 研究发现对于对称的双层石墨烯, 层间摩擦沿不同方向同性; 摩擦因数依赖于正压力, 随正压力增大, 摩擦因数的变化曲线分为三个阶段, 在较小以及较大压力下, 摩擦因数遵循Amonton法则不随压力变化而变化; 而在中间36 nN阶段, 摩擦因数随压力增加线性增加. 整个研究压力范围内摩擦因数在0.050.25之间. 对于非对称性双层石墨烯层间摩擦, 不同压力下摩擦因数在0.006上下波动, 摩擦因数较两层对称性石墨烯大大降低. 上述研究结果与实验一致.
    Using the first-principles calculations within the density functional theory, we study the nanofriction between two graphene layers. The result shows that the friction of the graphene is isotropic, and the relationship between the load and the friction factor can be divided into three phases. For the smaller and larger loads, the friction factor does not increase as the load increases, which follows the Amonton's law; for the middle phase, with the increase of the load, the friction factor increases linearly. However, the nanofriction characteristics between the two incommensurate graphenes show that the incommensurate structure can reduce the friction factor between graphenes greatly, which is in agreement with experimental result. These studies provide a fundamental understanding about the nanofriction phenomenon between the graphene layers.
    • 基金项目: 国家自然科学基金(批准号: 10974182)和河南省自然科学基金(批准号: 112300410149)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974182) and the Natural Science Foundation of Henan Province, China (Grant No. 112300410149).
    [1]

    Binnig G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [2]

    Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930

    [3]

    Mate C M, McClelland G M, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 59 1942

    [4]

    Tomlinson G A 1929 Philos. Mag. 7 905

    [5]

    Weiss M, Elmer F 1996 Phys. Rev. B 53 7539

    [6]

    Zhong W, Tom醤ek D 1990 Phys. Rev. Lett. 64 3054

    [7]

    Overney G, Zhong W, Tom醤ek D 1991 J. Vac. Sci. Technol. B 9 479

    [8]

    Tom醤ek D, Zhong W, Thomas H 1991 Europhys. Lett. 15 887

    [9]

    Ni B, Sinnott S B 2001 Surf. Sci. 487 87

    [10]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [11]

    Servantie J, Gaspard P 2003 Phys. Rev. Lett. 91 185503

    [12]

    Bonelli F, Manini N, Cadelano E, Colombo L 2009 Eur. Phys. J. B 70 449

    [13]

    Guo Y, Guo W, Chen C 2007 Phys. Rev. B 76 155429

    [14]

    Verhoeven G S, Dienwiebel M, Frenken J W M 2004 Phys. Rev. B 70 165418

    [15]

    Neitola R, Ruuska H, Pakkanen T A 2005 J. Phys. Chem. B 109 10348

    [16]

    Matsuzawa N N, Kishii N 1997 J. Phys. Chem. A 101 10045

    [17]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697

    [18]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [19]

    Kresse G, Furthm黮er J 1996 Phys. Rev. B 54 11169

    [20]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [21]

    Trickey S B, M黮ler-Plathe F, Diercksen G H F, Boettger J C 1992 Phys. Rev. B 45 4460

    [22]

    Ooi N, Rairkar A, Adams J B 2006 Carbon 44 231

    [23]

    Girifalco L A, Hodak M 2002 Phys. Rev. B 65 125404

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    McKie D, McKie C 1986 Essentials of Crystallography (Oxford: Oxford Press) pp6-8

    [27]

    Ruan J, Bhushan B 1994 J. Appl. Phys. 76 8117

    [28]

    Sugishita J, Fujiyoshi S 1981 Wear 68 7

    [29]

    Zaidi H, Csapo E, Nery H, Paulmier D, Mathia T 1993 Surf. Coat. Technol. 62 388

    [30]

    Matsushita K, Matsukawa H, Sasaki N 2005 Solid State Commun. 136 51

    [31]

    Zaidi H, Paulmier D, Jeanmaire A, Nery H 1991 Surf. Sci. 251 778

    [32]

    M黶er M H, Wenning L, Robbins M O 2001 Phys. Rev. Lett. 86 1295

    [33]

    Maier S, Pfeiffer O, Glatzel T, Meyer E, Filleter T, Bennewitz R 2007 Phys. Rev. B 75 195408

    [34]

    Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E 2008 Phys. Rev. B 78 045432

  • [1]

    Binnig G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [2]

    Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930

    [3]

    Mate C M, McClelland G M, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 59 1942

    [4]

    Tomlinson G A 1929 Philos. Mag. 7 905

    [5]

    Weiss M, Elmer F 1996 Phys. Rev. B 53 7539

    [6]

    Zhong W, Tom醤ek D 1990 Phys. Rev. Lett. 64 3054

    [7]

    Overney G, Zhong W, Tom醤ek D 1991 J. Vac. Sci. Technol. B 9 479

    [8]

    Tom醤ek D, Zhong W, Thomas H 1991 Europhys. Lett. 15 887

    [9]

    Ni B, Sinnott S B 2001 Surf. Sci. 487 87

    [10]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [11]

    Servantie J, Gaspard P 2003 Phys. Rev. Lett. 91 185503

    [12]

    Bonelli F, Manini N, Cadelano E, Colombo L 2009 Eur. Phys. J. B 70 449

    [13]

    Guo Y, Guo W, Chen C 2007 Phys. Rev. B 76 155429

    [14]

    Verhoeven G S, Dienwiebel M, Frenken J W M 2004 Phys. Rev. B 70 165418

    [15]

    Neitola R, Ruuska H, Pakkanen T A 2005 J. Phys. Chem. B 109 10348

    [16]

    Matsuzawa N N, Kishii N 1997 J. Phys. Chem. A 101 10045

    [17]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697

    [18]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [19]

    Kresse G, Furthm黮er J 1996 Phys. Rev. B 54 11169

    [20]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [21]

    Trickey S B, M黮ler-Plathe F, Diercksen G H F, Boettger J C 1992 Phys. Rev. B 45 4460

    [22]

    Ooi N, Rairkar A, Adams J B 2006 Carbon 44 231

    [23]

    Girifalco L A, Hodak M 2002 Phys. Rev. B 65 125404

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    McKie D, McKie C 1986 Essentials of Crystallography (Oxford: Oxford Press) pp6-8

    [27]

    Ruan J, Bhushan B 1994 J. Appl. Phys. 76 8117

    [28]

    Sugishita J, Fujiyoshi S 1981 Wear 68 7

    [29]

    Zaidi H, Csapo E, Nery H, Paulmier D, Mathia T 1993 Surf. Coat. Technol. 62 388

    [30]

    Matsushita K, Matsukawa H, Sasaki N 2005 Solid State Commun. 136 51

    [31]

    Zaidi H, Paulmier D, Jeanmaire A, Nery H 1991 Surf. Sci. 251 778

    [32]

    M黶er M H, Wenning L, Robbins M O 2001 Phys. Rev. Lett. 86 1295

    [33]

    Maier S, Pfeiffer O, Glatzel T, Meyer E, Filleter T, Bennewitz R 2007 Phys. Rev. B 75 195408

    [34]

    Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E 2008 Phys. Rev. B 78 045432

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [4] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [7] 邓剑锋, 李慧琴, 于帆, 梁齐. 机械剥离折叠石墨烯粘附与纳米摩擦性质. 物理学报, 2020, 69(7): 076802. doi: 10.7498/aps.69.20191825
    [8] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [9] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [10] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [11] 董赟, 段早琦, 陶毅, Gueye Birahima, 张艳, 陈云飞. 基底支撑刚度梯度变化对石墨烯层间摩擦力的影响. 物理学报, 2019, 68(1): 016801. doi: 10.7498/aps.68.20181905
    [12] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [13] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [14] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [15] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [16] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [17] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [18] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究. 物理学报, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [19] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [20] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
计量
  • 文章访问数:  6958
  • PDF下载量:  945
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-15
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回