搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究

刘漾 魏彦玉 沈飞 许雄 刘洋 赖剑强 黄明智 唐涛 宫玉彬

开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究

刘漾, 魏彦玉, 沈飞, 许雄, 刘洋, 赖剑强, 黄明智, 唐涛, 宫玉彬
PDF
导出引用
  • 提出了一种可应用于毫米波功率放大器中的新型慢波结构开敞型角向周期 加载金属柱圆波导结构,并且在互作用通道内,引入了薄环形电子注, 推导出了此时的热色散方程,并且对基于该新型慢波结构的行波管的 小信号增益特性进行了深入探讨.通过数值方法 研究了金属柱尺寸和电子注参数 对器件线性特性的影响. 结果表明: 通过对金属柱尺寸的适当设计, 可以获得更高的增益值. 与封闭型结构的比较结果表明, 开敞型角向周期加载金属柱圆波导结构能够 有效地提高小信号增益, 并且对带宽的影响不大. 研究结果为研制基于此新型慢波系统的毫米波行波管奠定了理论基础.
    • 基金项目: 国家杰出青年科学基金(批准号: 61125103); 国家自然科学基金(批准号: 60971038) 和中央高校基本科研业务费(批准号: ZYGX2009Z003)资助的课题.
    [1]

    Feng J J, Hu Y F, Cai J, Wu X P, Tang Y 2010 Vacuum Electronics 2 27 (in Chinese) [冯进军, 胡银富, 蔡军, 邬显平, 唐烨 2010 真空电子技术 2 27]

    [2]

    Chong C K, Davis J A 2005 IEEE Trans. Electron Dev. 52 2

    [3]

    Qu B, Feng J J 2010 Vacuum Electronics 2 16 (in Chinese) [瞿波, 冯进军 2010 真空电子技术 2 16]

    [4]

    Ding Y G, Liu P K, Zhang Z C, Wang Y 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, India, February 21-24, 2011 p525

    [5]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪峰, 童长江 2010 物理学报 59 8459]

    [6]

    Hu Y L, Yang Z H, Li B, Li J Q, Huang T, Jin X L, Zhu X F, Liang X P 2010 Acta Phys. Sin. 59 5439 (in Chinese) [胡玉禄, 杨中海, 李斌, 李建清, 黄桃, 金晓林, 朱小芳, 梁献普 2010 物理学报 59 5439]

    [7]

    Vancil B K 2004 Proceedings of the 5th International Vacuum Electron Sources Conference Beijing, China, September 6-10, 2004 p23

    [8]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese) [郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 物理学报 58 3118]

    [9]

    Gong Y B, Wei Y Y, Huang M Z 2008 Global Symposium on Millimeter Waves Nanjing, China, April 21-24, 2008 pp337-339

    [10]

    He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 物理学报 59 2843]

    [11]

    Liu Y, Wei Y Y, Gong Y B, Wang W X 2010 IEEE Trans. Electron Dev. 57 2019

    [12]

    Liu Y, Wei Y Y, Gong Y B, Gong H R, Xu J, Yue L N, Wang W X 2011 IEEE Trans. Plasma Sci. 39 1673

    [13]

    Leou K C, McDermott D B, Luhmann N C Jr 1992 IEEE Trans. Plasma Sci. 20 188

    [14]

    Liu Y, Wei Y Y, Xu J 2012 Chin. Phys. B 21 048403

    [15]

    Freund J P, Kodis M A, Vanderplaats N R 1992 IEEE Trans. Plasma Sci. 20 543

    [16]

    He J, Wei Y Y, Gong Y B, Duan Z Y, Lu Z G, Wang W X 2010 Acta Phys. Sin. 59 6659 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥 2010 物理学报 59 6659]

  • [1]

    Feng J J, Hu Y F, Cai J, Wu X P, Tang Y 2010 Vacuum Electronics 2 27 (in Chinese) [冯进军, 胡银富, 蔡军, 邬显平, 唐烨 2010 真空电子技术 2 27]

    [2]

    Chong C K, Davis J A 2005 IEEE Trans. Electron Dev. 52 2

    [3]

    Qu B, Feng J J 2010 Vacuum Electronics 2 16 (in Chinese) [瞿波, 冯进军 2010 真空电子技术 2 16]

    [4]

    Ding Y G, Liu P K, Zhang Z C, Wang Y 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, India, February 21-24, 2011 p525

    [5]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪峰, 童长江 2010 物理学报 59 8459]

    [6]

    Hu Y L, Yang Z H, Li B, Li J Q, Huang T, Jin X L, Zhu X F, Liang X P 2010 Acta Phys. Sin. 59 5439 (in Chinese) [胡玉禄, 杨中海, 李斌, 李建清, 黄桃, 金晓林, 朱小芳, 梁献普 2010 物理学报 59 5439]

    [7]

    Vancil B K 2004 Proceedings of the 5th International Vacuum Electron Sources Conference Beijing, China, September 6-10, 2004 p23

    [8]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese) [郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 物理学报 58 3118]

    [9]

    Gong Y B, Wei Y Y, Huang M Z 2008 Global Symposium on Millimeter Waves Nanjing, China, April 21-24, 2008 pp337-339

    [10]

    He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 物理学报 59 2843]

    [11]

    Liu Y, Wei Y Y, Gong Y B, Wang W X 2010 IEEE Trans. Electron Dev. 57 2019

    [12]

    Liu Y, Wei Y Y, Gong Y B, Gong H R, Xu J, Yue L N, Wang W X 2011 IEEE Trans. Plasma Sci. 39 1673

    [13]

    Leou K C, McDermott D B, Luhmann N C Jr 1992 IEEE Trans. Plasma Sci. 20 188

    [14]

    Liu Y, Wei Y Y, Xu J 2012 Chin. Phys. B 21 048403

    [15]

    Freund J P, Kodis M A, Vanderplaats N R 1992 IEEE Trans. Plasma Sci. 20 543

    [16]

    He J, Wei Y Y, Gong Y B, Duan Z Y, Lu Z G, Wang W X 2010 Acta Phys. Sin. 59 6659 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥 2010 物理学报 59 6659]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2014
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-23
  • 修回日期:  2011-12-15
  • 刊出日期:  2012-08-05

开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究

  • 1. 电子科技大学物理电子学院, 微波电真空器件国家级重点实验室, 成都 610054
    基金项目: 

    国家杰出青年科学基金(批准号: 61125103)

    国家自然科学基金(批准号: 60971038) 和中央高校基本科研业务费(批准号: ZYGX2009Z003)资助的课题.

摘要: 提出了一种可应用于毫米波功率放大器中的新型慢波结构开敞型角向周期 加载金属柱圆波导结构,并且在互作用通道内,引入了薄环形电子注, 推导出了此时的热色散方程,并且对基于该新型慢波结构的行波管的 小信号增益特性进行了深入探讨.通过数值方法 研究了金属柱尺寸和电子注参数 对器件线性特性的影响. 结果表明: 通过对金属柱尺寸的适当设计, 可以获得更高的增益值. 与封闭型结构的比较结果表明, 开敞型角向周期加载金属柱圆波导结构能够 有效地提高小信号增益, 并且对带宽的影响不大. 研究结果为研制基于此新型慢波系统的毫米波行波管奠定了理论基础.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回