搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu 表面性质的第一性原理分析

舒瑜 张研 张建民

Cu 表面性质的第一性原理分析

舒瑜, 张研, 张建民
PDF
导出引用
导出核心图
  • 采用第一性原理赝势平面波方法, 计算并详细分析了面心立方Cu晶体及其 (100), (110) 和 (111) 这3个低指数表面的原子结构、 表面能量及表面电子态密度. 表面能的计算结果表明, Cu (111) 表面的结构稳定性最好, Cu (100) 表面次之, Cu (110)表面的结构稳定性最差. 3个表面的表面原子弛豫量随着层数的增加而逐渐减弱. Cu (110) 表面的最表层原子相对收缩最大, Cu (100)表面次之, Cu (111) 表面的最表层原子相对收缩最小. 表面原子弛豫不仅引起表面几何结构的变化, 而且使表面层原子的电子态密度峰形相对晶体内部发生变化, 这是表面能产生的主要原因, 而Cu (110)表面相对于Cu (100)与Cu (111)表面具有高表面活性的主要原因则源于其表面层原子电子态密度在高能级处的波峰相对晶体内部显著的升高.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB631002)和国家自然科学基金(批准号: 51071098)资助的课题.
    [1]

    DesjonquèresMC, Spanjaard D 1995 Concepts in Surface Science (New York: Springer Press) p1

    [2]

    Kittel C 1996 Introduction to Solid State Physics 7th Ed (New York: Wiley Press) p152

    [3]

    Smith C J 1976 Metals Reference Book (5th Ed.) (London: Butterworrd Press ) p186

    [4]

    Davis H L, Noonan J R 1983 Surf. Sci. 126 245

    [5]

    Noonan J R, Davis H L 1982 Bull. Am. Phys. Soc. 27 237

    [6]

    Lind D M, Dunning F B, Walters G K, Davis H L 1987 Phys. Rev. B 35 9037

    [7]

    Adams D L, Nielsen H B, Andersen J N 1983 Surf. Sci. 128 294

    [8]

    Davis H L, Noonan J R, Jenkins L H 1979 Surf. Sci. 83 559

    [9]

    Noonan J R, Davis H L 1980 Surf. Sci. 99, L424

    [10]

    Tear S P, Röll K, Prutton M 1981 J. Phys. C 14 3297.

    [11]

    Lindgren S Å , Wallde? L, Rundgren J, Westrin P 1984 Phys. Rev. B 29 576

    [12]

    Bartoš I, Jaroš P, Barbieri A, van Hove M A, Chung W F, Cal Q, Altman M S 1995 Surf. Sci. Lett. 2 477

    [13]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [14]

    de Boer F R, Boom R, MattensWC M, Miedema A R, Niessen A K 1988 Cohesion in Metals (Amsterdam: North-Holland Press)

    [15]

    Domain C, Becquart C S 2002 Phys. Rev. B 65 024103

    [16]

    Khein A, Singh D J, Umrigar C J 1995 Phys. Rev. B 51 4105

    [17]

    Da Silva J L F 2002 Ph. D. Dissertation (Berlin: Technical University Berlin, Germany)

    [18]

    Da Silva J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 69 245411

    [19]

    Rodach T, Bohnen K P, Ho K M 1993 Surf. Sci. 286 66

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Sinnott S B, Stave M S, Raeker T J, de Pristo A E 1991 Phys. Rev. B 44 8927

    [22]

    Ross C, Schirmer B, Wuttig M, Gauthier Y, Bihlmayer G, Blügel S 1998 Phys. Rev. B 57 2607

    [23]

    Sklyadneva I Y, Rusina G G, Chulkov E V 1998 Surf. Sci. 416 17

    [24]

    Da Silva J L F, Barreteau C, Schroeder K, Schroeder K, Blügel S 2006 Phys. Rev. B 73 125402

    [25]

    Galanakis I, Bihlmayer G, Bellini V, Papanikolaou N, Zeller R, Blögel S, Dederichs P H 2002 Europhys. Lett. 58 751

    [26]

    Skriver H L, Rosengaard N M 1992 Phys. Rev. B 46 7157

    [27]

    Vitos L, Skriver H L, Kollár J 1999 Surf. Sci. 425 212

    [28]

    Tian Z J, Rahman T S 1993 Phys. Rev. B 47 9751

    [29]

    Raouafi F, Barreteau C, Desjonquères M C, Spanjaard D 2002 Surf. Sci. 505 183

    [30]

    Wan J, Shen S G, Fan X Q 1997 Acta Phys. Sin. 46 1161 (in Chinese) [万钧, 申三国, 范希庆 1997 物理学报 46 1161]

    [31]

    Zhang J M, Li H Y, Xu K W 2006 J. Phys. Chem. Solids 67 1623

    [32]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [33]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [34]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5390

    [39]

    Xiao J M, Zhu F W 1999 Energetics of Materials (Shanghai: Shanghai Science and Technology Press) p417 (in Chinese) [肖纪美, 朱逢吾 1999 材料能量学 (上海: 上海科学技术出版社) 第417页]

  • [1]

    DesjonquèresMC, Spanjaard D 1995 Concepts in Surface Science (New York: Springer Press) p1

    [2]

    Kittel C 1996 Introduction to Solid State Physics 7th Ed (New York: Wiley Press) p152

    [3]

    Smith C J 1976 Metals Reference Book (5th Ed.) (London: Butterworrd Press ) p186

    [4]

    Davis H L, Noonan J R 1983 Surf. Sci. 126 245

    [5]

    Noonan J R, Davis H L 1982 Bull. Am. Phys. Soc. 27 237

    [6]

    Lind D M, Dunning F B, Walters G K, Davis H L 1987 Phys. Rev. B 35 9037

    [7]

    Adams D L, Nielsen H B, Andersen J N 1983 Surf. Sci. 128 294

    [8]

    Davis H L, Noonan J R, Jenkins L H 1979 Surf. Sci. 83 559

    [9]

    Noonan J R, Davis H L 1980 Surf. Sci. 99, L424

    [10]

    Tear S P, Röll K, Prutton M 1981 J. Phys. C 14 3297.

    [11]

    Lindgren S Å , Wallde? L, Rundgren J, Westrin P 1984 Phys. Rev. B 29 576

    [12]

    Bartoš I, Jaroš P, Barbieri A, van Hove M A, Chung W F, Cal Q, Altman M S 1995 Surf. Sci. Lett. 2 477

    [13]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [14]

    de Boer F R, Boom R, MattensWC M, Miedema A R, Niessen A K 1988 Cohesion in Metals (Amsterdam: North-Holland Press)

    [15]

    Domain C, Becquart C S 2002 Phys. Rev. B 65 024103

    [16]

    Khein A, Singh D J, Umrigar C J 1995 Phys. Rev. B 51 4105

    [17]

    Da Silva J L F 2002 Ph. D. Dissertation (Berlin: Technical University Berlin, Germany)

    [18]

    Da Silva J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 69 245411

    [19]

    Rodach T, Bohnen K P, Ho K M 1993 Surf. Sci. 286 66

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Sinnott S B, Stave M S, Raeker T J, de Pristo A E 1991 Phys. Rev. B 44 8927

    [22]

    Ross C, Schirmer B, Wuttig M, Gauthier Y, Bihlmayer G, Blügel S 1998 Phys. Rev. B 57 2607

    [23]

    Sklyadneva I Y, Rusina G G, Chulkov E V 1998 Surf. Sci. 416 17

    [24]

    Da Silva J L F, Barreteau C, Schroeder K, Schroeder K, Blügel S 2006 Phys. Rev. B 73 125402

    [25]

    Galanakis I, Bihlmayer G, Bellini V, Papanikolaou N, Zeller R, Blögel S, Dederichs P H 2002 Europhys. Lett. 58 751

    [26]

    Skriver H L, Rosengaard N M 1992 Phys. Rev. B 46 7157

    [27]

    Vitos L, Skriver H L, Kollár J 1999 Surf. Sci. 425 212

    [28]

    Tian Z J, Rahman T S 1993 Phys. Rev. B 47 9751

    [29]

    Raouafi F, Barreteau C, Desjonquères M C, Spanjaard D 2002 Surf. Sci. 505 183

    [30]

    Wan J, Shen S G, Fan X Q 1997 Acta Phys. Sin. 46 1161 (in Chinese) [万钧, 申三国, 范希庆 1997 物理学报 46 1161]

    [31]

    Zhang J M, Li H Y, Xu K W 2006 J. Phys. Chem. Solids 67 1623

    [32]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [33]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [34]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5390

    [39]

    Xiao J M, Zhu F W 1999 Energetics of Materials (Shanghai: Shanghai Science and Technology Press) p417 (in Chinese) [肖纪美, 朱逢吾 1999 材料能量学 (上海: 上海科学技术出版社) 第417页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2401
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-14
  • 修回日期:  2011-04-25
  • 刊出日期:  2012-01-05

Cu 表面性质的第一性原理分析

  • 1. 陕西师范大学物理学与信息技术学院, 西安 710062
    基金项目: 

    国家重点基础研究发展计划(批准号: 2010CB631002)和国家自然科学基金(批准号: 51071098)资助的课题.

摘要: 采用第一性原理赝势平面波方法, 计算并详细分析了面心立方Cu晶体及其 (100), (110) 和 (111) 这3个低指数表面的原子结构、 表面能量及表面电子态密度. 表面能的计算结果表明, Cu (111) 表面的结构稳定性最好, Cu (100) 表面次之, Cu (110)表面的结构稳定性最差. 3个表面的表面原子弛豫量随着层数的增加而逐渐减弱. Cu (110) 表面的最表层原子相对收缩最大, Cu (100)表面次之, Cu (111) 表面的最表层原子相对收缩最小. 表面原子弛豫不仅引起表面几何结构的变化, 而且使表面层原子的电子态密度峰形相对晶体内部发生变化, 这是表面能产生的主要原因, 而Cu (110)表面相对于Cu (100)与Cu (111)表面具有高表面活性的主要原因则源于其表面层原子电子态密度在高能级处的波峰相对晶体内部显著的升高.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回