搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究

程亮 甘章华 刘威 赵兴中

(Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究

程亮, 甘章华, 刘威, 赵兴中
PDF
导出引用
  • 二氧化钛(TiO2)作为一种性能优良的光催化剂已经受到越来越多的关注. 本研究采用密度泛函理论的第一性原理和广义梯度近似+U方法,对锐钛矿结构TiO2晶体三种可能的(Nb, N) 共掺杂TiO2的几何结构、形成能、能带结构、电子密度和光吸收系数进行了研究, 并与单掺杂(Nb/N)体系进行了对比.对掺杂后体系的几何结构进行的计算表明杂质原子掺入后晶格发生了不同程度的畸变.此外, (Nb, N)共掺杂体系与纯TiO2相比,其禁带宽度和吸收边较小.同时,与N掺杂TiO2相比, N的2p态在共掺杂情形下变为完全占据, 从而减少了电子空穴对的复合.而且共掺杂体系的形成能比N单掺杂体系低,因而更加稳定. 因此, (Nb, N)共掺杂可以很好地提升锐钛矿型TiO2在可见光波段的光催化性能.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB933300) 和国家基础科学人才培养基金(批准号: J0830310)资助的课题.
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Fujishima A, Rao T N 2000 J. Photoch Photobio C 1 1

    [3]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [4]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [5]

    Livraghi S, Chierotti M R, Giamello E, Magnacca G, Paganini M C, Cappelletti G, Bianchi C L 2008 J. Phys. Chem. C 112 17244

    [6]

    Sun H, Bai Y, Jin W, Xu N 2008 Sol. Energy Mater. Sol. Cells 92 76

    [7]

    Hu S, Wang A, Li X, Lowe H 2010 J. Phys. Chem. Solids 71 156

    [8]

    Yin Y, Zhang W, Chen S, Yu S 2009 Mater. Chem. Phys. 113 982

    [9]

    Mi L, Zhang Y, Wang P N 2008 Chem. Phys. Lett. 458 341

    [10]

    Chen X, Burda C 2008 J. Am. Chem. Soc. 130 5018

    [11]

    Stengl V, Bakardjieva S 2010 J. Phys. Chem. C 114 19308

    [12]

    Kurtoglu M E, Longenbach T, Sohlberg K, Gogotsi Y 2011 J. Phys. Chem. C 115 17392

    [13]

    Zhu W, Qiu X, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer III H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B, Eres G, Zhang Z 2009 Phys. Rev. Lett. 103 226401

    [14]

    Long R, English N J 2010 Chem. Mater. 22 1616

    [15]

    Khan M, Xu J, Chen N, Cao W 2012 J. Alloys Compd. 513 539

    [16]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [17]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [18]

    Furubayashi Y, Hitosugi T, Hasegawa T 2006 Appl. Phys. Lett. 88 226103

    [19]

    Zhang S X, Kundaliya D C, Yi W, Dhar S, Young S Y, Salamanca-Riba L G, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11

    [21]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [22]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767

    [23]

    Zhang S B 2002 J. Phys. Condens. Matter 14 881

    [24]

    Sun J, Wang H T, He J, Tian Y 2005 Phys. Rev. B 71 125132

    [25]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [26]

    Czoska A M, Livraghi S, Chiesa M, Giamello E, Agnoli S, Granozzi G, Finazzi E, Valentin C D, Pacchioni G 2008 J. Phys. Chem. C 112 8951

    [27]

    Zhang S X, Kundaliya D C, Yi W, Dhar S, Young S Y, Salamanca-Riba L G, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [28]

    Irie H, Watanabe Y, Hashimoto K 2003 J. Phys. Chem. B 107 5483

    [29]

    Valentin C D, Pacchioni G, Selloni A, Livraghi S, Giamello E 2005 J. Phys. Chem. B 109 11414

    [30]

    Valentin C D, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44

    [31]

    Nakano Y, Morikawa T, Ohwaki T 2005 Appl. Phys. Lett. 86 132104

    [32]

    Shi W, Chen Q, Xu Y, Wu D, Huo C 2011 Appl. Surf. Sci. 257 3000

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Fujishima A, Rao T N 2000 J. Photoch Photobio C 1 1

    [3]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [4]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [5]

    Livraghi S, Chierotti M R, Giamello E, Magnacca G, Paganini M C, Cappelletti G, Bianchi C L 2008 J. Phys. Chem. C 112 17244

    [6]

    Sun H, Bai Y, Jin W, Xu N 2008 Sol. Energy Mater. Sol. Cells 92 76

    [7]

    Hu S, Wang A, Li X, Lowe H 2010 J. Phys. Chem. Solids 71 156

    [8]

    Yin Y, Zhang W, Chen S, Yu S 2009 Mater. Chem. Phys. 113 982

    [9]

    Mi L, Zhang Y, Wang P N 2008 Chem. Phys. Lett. 458 341

    [10]

    Chen X, Burda C 2008 J. Am. Chem. Soc. 130 5018

    [11]

    Stengl V, Bakardjieva S 2010 J. Phys. Chem. C 114 19308

    [12]

    Kurtoglu M E, Longenbach T, Sohlberg K, Gogotsi Y 2011 J. Phys. Chem. C 115 17392

    [13]

    Zhu W, Qiu X, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer III H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B, Eres G, Zhang Z 2009 Phys. Rev. Lett. 103 226401

    [14]

    Long R, English N J 2010 Chem. Mater. 22 1616

    [15]

    Khan M, Xu J, Chen N, Cao W 2012 J. Alloys Compd. 513 539

    [16]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [17]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [18]

    Furubayashi Y, Hitosugi T, Hasegawa T 2006 Appl. Phys. Lett. 88 226103

    [19]

    Zhang S X, Kundaliya D C, Yi W, Dhar S, Young S Y, Salamanca-Riba L G, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11

    [21]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [22]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767

    [23]

    Zhang S B 2002 J. Phys. Condens. Matter 14 881

    [24]

    Sun J, Wang H T, He J, Tian Y 2005 Phys. Rev. B 71 125132

    [25]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [26]

    Czoska A M, Livraghi S, Chiesa M, Giamello E, Agnoli S, Granozzi G, Finazzi E, Valentin C D, Pacchioni G 2008 J. Phys. Chem. C 112 8951

    [27]

    Zhang S X, Kundaliya D C, Yi W, Dhar S, Young S Y, Salamanca-Riba L G, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [28]

    Irie H, Watanabe Y, Hashimoto K 2003 J. Phys. Chem. B 107 5483

    [29]

    Valentin C D, Pacchioni G, Selloni A, Livraghi S, Giamello E 2005 J. Phys. Chem. B 109 11414

    [30]

    Valentin C D, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44

    [31]

    Nakano Y, Morikawa T, Ohwaki T 2005 Appl. Phys. Lett. 86 132104

    [32]

    Shi W, Chen Q, Xu Y, Wu D, Huo C 2011 Appl. Surf. Sci. 257 3000

  • 引用本文:
    Citation:
计量
  • 文章访问数:  3823
  • PDF下载量:  931
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-06-26
  • 刊出日期:  2012-12-05

(Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究

  • 1. 武汉大学物理科学与技术学院, 武汉 430072;
  • 2. 武汉科技大学材料与冶金学院, 武汉 430000
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB933300) 和国家基础科学人才培养基金(批准号: J0830310)资助的课题.

摘要: 二氧化钛(TiO2)作为一种性能优良的光催化剂已经受到越来越多的关注. 本研究采用密度泛函理论的第一性原理和广义梯度近似+U方法,对锐钛矿结构TiO2晶体三种可能的(Nb, N) 共掺杂TiO2的几何结构、形成能、能带结构、电子密度和光吸收系数进行了研究, 并与单掺杂(Nb/N)体系进行了对比.对掺杂后体系的几何结构进行的计算表明杂质原子掺入后晶格发生了不同程度的畸变.此外, (Nb, N)共掺杂体系与纯TiO2相比,其禁带宽度和吸收边较小.同时,与N掺杂TiO2相比, N的2p态在共掺杂情形下变为完全占据, 从而减少了电子空穴对的复合.而且共掺杂体系的形成能比N单掺杂体系低,因而更加稳定. 因此, (Nb, N)共掺杂可以很好地提升锐钛矿型TiO2在可见光波段的光催化性能.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回