搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶可停振动系统的周期未知微弱信号检测方法

周薛雪 赖莉 罗懋康

基于分数阶可停振动系统的周期未知微弱信号检测方法

周薛雪, 赖莉, 罗懋康
PDF
导出引用
导出核心图
  • 本文建立了分数阶可停振动系统, 其可停振动状态的改变对周期策动力敏感, 对零均值随机微小扰动不敏感, 这事实上为周期未知微弱信号检测提供了一种新的高效检测方法和判别标准. 与现有的利用混沌系统的大尺度周期状态变化检测周期未知弱信号的方法 需逐一尝试设置不同频率内置信号以便期望与待检周期信号发生共振不同, 利用分数阶可停振动系统的可停振动状态变化检测周期未知微弱信号的方法, 除了同样具有因为状态变化对周期信号的敏感性而能够实现极低检测门限的特点外, 还具有混沌系统信号检测所不具有的优点: 1)无需预先估计待检信号的周期; 2)无需计算系统状态的临界阈值; 3)可停振动状态可由本文设计的指数波动函数可靠地进行判断; 4)通过系统微分阶数的变化, 将检测系统层次化, 从而可得到比整数阶检测系统更低的检测门限, 特别是在色噪声环境下, 通过选取合适的微分阶数, 基于分数阶可停振动系统的微弱周期信号检测法能够大幅度的降低检测门限, 在本文的仿真试验中, 检测门限可达-182 dB.
    • 基金项目: 国家自然科学基金(批准号:11171238)资助的课题.
    [1]

    Proakis J G 2003 Digital Communications (4th Edition) (Beijing: Electronic Industry Press) p169

    [2]

    Li Y, Yang B J 2004 Introduction of Detection by Chaotic Oscillator (Beijing: Electronic Industry Press) p55 (in Chinese) [李月, 杨宝俊 2004 混沌振子检测引论 (北京: 电子工业出版社) 第55页]

    [3]

    Wang G Y 2001 IEEE Transaction on Industrial Electronics 46 440

    [4]

    Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 57 2053 (in Chinese) [王永生, 姜文志, 赵建, 范洪达 2008 物理学报 57 2053]

    [5]

    Wang J X, Hou C L 2010 International Conference on e-Education, e-Business, e-Management, e-Learning Sanya, Jan, 2010 p387

    [6]

    Zhang Z F, Ding T R, Huang W Z, Dong Z X 1997 Qualitative Theory of Differential Equation (2nd Edition) (Beijing: Science Press) p450 (in Chinese) [张芷芬, 丁同仁, 黄文灶, 董镇喜 1997 微分方程的定性理论(第2版) (北京: 科学出版社) 第450页]

    [7]

    Zhao P D, Zhang X D 2008 Acta Phys. Sin. 58 2791 (in Chinese) [赵品栋, 张晓丹 2008 物理学报 58 2791 ]

    [8]

    Wang M J, Wang X Y 2010 Acta Phys. Sin. 59 1583 (in Chinese) [王明军, 王兴元 2010 物理学报 59 1583]

    [9]

    Petráš I 2011 Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing: Higher Education Press) p55

    [10]

    Zhou S, Fu J L, Liu Y S 2010 Chin. Phys. B 19 120301

    [11]

    Zhang Y 2012 Chin. Phys. B 21 084502

    [12]

    Wei H Y, Xia T C 2012 Chin. Phys. B 21 100505

    [13]

    Zhang S H, Chen B Y, Fu J L 2012 Chin. Phys. B 21 100202

    [14]

    Chen X R 2000 Probability and Statistics (Beijing: Science Press) p141 (in Chinese) [陈希孺 2000 概率论与数理统计(北京:科学出版社) 第141页]

    [15]

    Zhu W Q 2003 Nonlinear Stochastic Dynamical Systems and Control p122 (in Chinese) [朱卫秋 2003 非线性随机动力系统与控制(北京: 科学出版社) 第122页]

    [16]

    Arnold V I 1961 Sov. Math. Dokl. 2 247

    [17]

    Tavazoei M S, Haeri M 2007 Phys. Lett. A 367 102

    [18]

    Tavazoei M S, Haeri M 2008 Nonlinear Analysis 69 1299

    [19]

    Tavazoei M S, Haeri M 2010 Automatic 46 94

    [20]

    Wang Z H, Hu H Y 2010 Science China: Physics, Mechanics {& Astronomy} 53 345

    [21]

    Sabattier J, Moze M, Farges C 2010 Comput. Math. Appl. 59 1594

    [22]

    Tavazoei M S, Haeri M 2008 Physica D 237 2628

    [23]

    Tavazoei M S, Haeri M 2009 Math. Comput. Simul. 79 1566

    [24]

    Podlubny I 1999 Fractional Differential Equations (San Diego USA: Acadamic Press) p78

  • [1]

    Proakis J G 2003 Digital Communications (4th Edition) (Beijing: Electronic Industry Press) p169

    [2]

    Li Y, Yang B J 2004 Introduction of Detection by Chaotic Oscillator (Beijing: Electronic Industry Press) p55 (in Chinese) [李月, 杨宝俊 2004 混沌振子检测引论 (北京: 电子工业出版社) 第55页]

    [3]

    Wang G Y 2001 IEEE Transaction on Industrial Electronics 46 440

    [4]

    Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 57 2053 (in Chinese) [王永生, 姜文志, 赵建, 范洪达 2008 物理学报 57 2053]

    [5]

    Wang J X, Hou C L 2010 International Conference on e-Education, e-Business, e-Management, e-Learning Sanya, Jan, 2010 p387

    [6]

    Zhang Z F, Ding T R, Huang W Z, Dong Z X 1997 Qualitative Theory of Differential Equation (2nd Edition) (Beijing: Science Press) p450 (in Chinese) [张芷芬, 丁同仁, 黄文灶, 董镇喜 1997 微分方程的定性理论(第2版) (北京: 科学出版社) 第450页]

    [7]

    Zhao P D, Zhang X D 2008 Acta Phys. Sin. 58 2791 (in Chinese) [赵品栋, 张晓丹 2008 物理学报 58 2791 ]

    [8]

    Wang M J, Wang X Y 2010 Acta Phys. Sin. 59 1583 (in Chinese) [王明军, 王兴元 2010 物理学报 59 1583]

    [9]

    Petráš I 2011 Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing: Higher Education Press) p55

    [10]

    Zhou S, Fu J L, Liu Y S 2010 Chin. Phys. B 19 120301

    [11]

    Zhang Y 2012 Chin. Phys. B 21 084502

    [12]

    Wei H Y, Xia T C 2012 Chin. Phys. B 21 100505

    [13]

    Zhang S H, Chen B Y, Fu J L 2012 Chin. Phys. B 21 100202

    [14]

    Chen X R 2000 Probability and Statistics (Beijing: Science Press) p141 (in Chinese) [陈希孺 2000 概率论与数理统计(北京:科学出版社) 第141页]

    [15]

    Zhu W Q 2003 Nonlinear Stochastic Dynamical Systems and Control p122 (in Chinese) [朱卫秋 2003 非线性随机动力系统与控制(北京: 科学出版社) 第122页]

    [16]

    Arnold V I 1961 Sov. Math. Dokl. 2 247

    [17]

    Tavazoei M S, Haeri M 2007 Phys. Lett. A 367 102

    [18]

    Tavazoei M S, Haeri M 2008 Nonlinear Analysis 69 1299

    [19]

    Tavazoei M S, Haeri M 2010 Automatic 46 94

    [20]

    Wang Z H, Hu H Y 2010 Science China: Physics, Mechanics {& Astronomy} 53 345

    [21]

    Sabattier J, Moze M, Farges C 2010 Comput. Math. Appl. 59 1594

    [22]

    Tavazoei M S, Haeri M 2008 Physica D 237 2628

    [23]

    Tavazoei M S, Haeri M 2009 Math. Comput. Simul. 79 1566

    [24]

    Podlubny I 1999 Fractional Differential Equations (San Diego USA: Acadamic Press) p78

  • [1] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振. 物理学报, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [2] 牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强. Duffing振子微弱信号检测盲区消除及检测统计量构造. 物理学报, 2015, 64(6): 060503. doi: 10.7498/aps.64.060503
    [3] 赖志慧, 冷永刚, 孙建桥, 范胜波. 基于Duffing振子的变尺度微弱特征信号检测方法研究. 物理学报, 2012, 61(5): 050503. doi: 10.7498/aps.61.050503
    [4] 冷永刚, 赖志慧, 范胜波, 高毓璣. 二维Duffing振子的大参数随机共振及微弱信号检测研究. 物理学报, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [5] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响. 物理学报, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [6] 包 刚, 那仁满都拉, 图布心, 额尔顿仓. 耦合混沌振子系统完全同步的动力学行为. 物理学报, 2007, 56(4): 1971-1974. doi: 10.7498/aps.56.1971
    [7] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [8] 陈志光, 李亚安, 陈晓. 基于Hilbert变换及间歇混沌的水声微弱信号检测方法研究. 物理学报, 2015, 64(20): 200502. doi: 10.7498/aps.64.200502
    [9] 张广丽, 吕希路, 康艳梅. 稳定噪声环境下过阻尼系统中的参数诱导随机共振现象. 物理学报, 2012, 61(4): 040501. doi: 10.7498/aps.61.040501
    [10] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [11] 王太勇, 冷永刚. 二次采样用于随机共振从强噪声中提取弱信号的数值研究. 物理学报, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [12] 戎海武, 王向东, 徐 伟, 方 同. 有界随机噪声激励下软弹簧Duffing振子的安全盆分叉. 物理学报, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
    [13] 王向东, 戎海武, 孟 光, 徐 伟, 方 同. 窄带随机噪声作用下Duffing振子的双峰稳态概率密度. 物理学报, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [14] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌. 物理学报, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [15] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [16] 冷永刚, 赖志慧. 基于Kramers逃逸速率的Duffing振子广义调参随机共振研究. 物理学报, 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [17] 李 强, 王太勇, 冷永刚, 何改云, 何慧龙. 基于近似熵测度的自适应随机共振研究. 物理学报, 2007, 56(12): 6803-6808. doi: 10.7498/aps.56.6803
    [18] 刘海波, 吴德伟, 金伟, 王永庆. Duffing振子微弱信号检测方法研究. 物理学报, 2013, 62(5): 050501. doi: 10.7498/aps.62.050501
    [19] 姚海洋, 王海燕, 张之琛, 申晓红. 一种基于广义Duffing振子的水中弱目标检测方法. 物理学报, 2017, 66(12): 124302. doi: 10.7498/aps.66.124302
    [20] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅. 基于强耦合Duffing振子的微弱脉冲信号检测与参数估计. 物理学报, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1176
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-27
  • 修回日期:  2013-01-07
  • 刊出日期:  2013-05-05

基于分数阶可停振动系统的周期未知微弱信号检测方法

  • 1. 四川大学数学学院, 成都 610065
    基金项目: 

    国家自然科学基金(批准号:11171238)资助的课题.

摘要: 本文建立了分数阶可停振动系统, 其可停振动状态的改变对周期策动力敏感, 对零均值随机微小扰动不敏感, 这事实上为周期未知微弱信号检测提供了一种新的高效检测方法和判别标准. 与现有的利用混沌系统的大尺度周期状态变化检测周期未知弱信号的方法 需逐一尝试设置不同频率内置信号以便期望与待检周期信号发生共振不同, 利用分数阶可停振动系统的可停振动状态变化检测周期未知微弱信号的方法, 除了同样具有因为状态变化对周期信号的敏感性而能够实现极低检测门限的特点外, 还具有混沌系统信号检测所不具有的优点: 1)无需预先估计待检信号的周期; 2)无需计算系统状态的临界阈值; 3)可停振动状态可由本文设计的指数波动函数可靠地进行判断; 4)通过系统微分阶数的变化, 将检测系统层次化, 从而可得到比整数阶检测系统更低的检测门限, 特别是在色噪声环境下, 通过选取合适的微分阶数, 基于分数阶可停振动系统的微弱周期信号检测法能够大幅度的降低检测门限, 在本文的仿真试验中, 检测门限可达-182 dB.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回