搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管

鲁东 金冬月 张万荣 张瑜洁 付强 胡瑞心 高栋 张卿远 霍文娟 周孟龙 邵翔鹏

新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管

鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏
PDF
导出引用
导出核心图
  • 宽温区大电流下的热不稳定性严重制约着功率SiGe 异质结双极晶体管 (HBT) 在射频和微波电路中的应用.为改善器件的热不稳定性, 本文利用SILVACO TCAD建立的多指功率SiGe HBT模型, 分析了器件纵向结构中基区Ge组分分布对微波功率SiGe HBT电学特性和热学特性的影响. 研究表明, 对于基区Ge组分为阶梯分布的HBT, 由于Ge组分缓变引入了少子加速电场, 使它与均匀基区Ge组分HBT相比, 具有更高的特征频率fT, 且电流增益β和fT随温度变化变弱, 这有利于防止器件在宽温区工作时电学特性的漂移.同时, 器件整体温度有所降低, 但器件各指温度分布均匀性较差.考虑多指HBT各发射极指散热能力存在差异, 在器件纵向结构设计为基区Ge组分阶梯分布的同时, 对其横向版图进行发射极指间距渐变结构设计, 用于改善器件各指温度分布的均匀性, 进而提高HBT的热稳定性.结果表明, 与基区Ge组分为均匀分布的等发射极指间距结构HBT相比, 新器件各指温度分布均匀性明显改善, fT保持了较高的值, 且β和fT 随温度变化不敏感, 热不稳定性得到显著改善, 显示了新器件在宽温区大电流下工作的优越性.
    • 基金项目: 国家自然科学基金(批准号: 61006059, 60776051, 61006049)、 北京市自然科学基金(批准号: 4082007)、 北京市优秀跨世纪人才基金(批准号: 67002013200301)、 北京市教委科技发展计划(批准号: KM200710005015, KM200910005001)和 北京市属市管高等学校人才强教服务北京计划资助的课题.
    [1]

    Li Y, Lopez J, Lie D Y C, Chen K, Wu S, Yang T Y, Ma G K 2011 IEEE Trans. Ciruits and Systems I: Regular Papers 58 893

    [2]

    Comeau J P, Najafizadeh L, Andrews J M, Prakash A P G, Cressler J D 2007 IEEE Microwave Wirel. Components Lett. 17 349

    [3]

    Giammello V, Ragonese E, Palmisano G 2012 IEEE Trans. Microwave Theory and Techniques 60 1676

    [4]

    Joseph A J, Cressler J D, Richey D M, Niu G F 1999 IEEE Trans. Electron Dev. 46 1347

    [5]

    Zhang Y J, Zhang W R, Guo Z J, Xing G H, Lu Z Y 2012 ICMMT Beijing, China, May 5-8, 2012 p1

    [6]

    Fox R M, Lee S G, Zweidinger D T 1993 IEEE J. Solid-State Circuits 28 678

    [7]

    Zhang Q Y, Yang Z M, Jiang Z H, Zhao C 2006 Acta Phys. Sin. 55 3106 (in Chinese) [张勤远, 杨中民, 姜中宏, 赵纯 2006 物理学报 55 3106]

    [8]

    Zhu Y B, Bao Z, Yang Y J, Cai C J 2009 Acta Phys. Sin. 58 7833 (in Chinese) [朱亚波, 鲍振, 杨玉杰, 蔡存金 2009 物理学报 58 7833]

    [9]

    Lee J G, Oh T K, Kim B, Kang B K 2001 Solid State Electron. 45 27

    [10]

    Chang Y H, Chiang C C, Lee Y C, Liu C C 2002 The Proceedings of the International Electron Devices Meeting Hong Kong, 22 June, 2001 p95

    [11]

    Zhou W, Sheu S, Liou J J, Huang C I 1996 Solid State Electron. 39 1709

    [12]

    Liu Y, Bayraktaroglu 1993 Solid State Electron. 36 125

    [13]

    Rieh J S, Greenberg D, Liu Q Z, Joseph A J, Freeman G, Ahlgren D C 2005 IEEE Trans. Electron Dev. 52 2744

    [14]

    Xiao Y, Zhang W R, Jin D Y, Chen L, Wang R Q, Xie H Y 2011 Acta Phys. Sin. 60 044402 (in Chinese) [肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云 2011 物理学报 60 044402]

    [15]

    Harame D L, Comfort J H, Cressler J D, CrabbC E F, Sun J Y C, Meyerson B S, Tice T 1995 IEEE Trans. Electron Dev. 4 455

    [16]

    Song J, Yuan J S, Schwierz F, Schipanski D 1996 Proceedings of the Third IEEE International Conference on Electronics, Circuits and Systems (ICECS) 2 876

    [17]

    Patri V S, Kumar M J 1999 IEE Proc.-Circuits Dev. Syst. 146 291

    [18]

    Jin D Y, Zhang W R, Chen L, Fu Q, Xiao Y, Wang R Q, Zhao X 2011 Chin. Phys. B 20 064401

  • [1]

    Li Y, Lopez J, Lie D Y C, Chen K, Wu S, Yang T Y, Ma G K 2011 IEEE Trans. Ciruits and Systems I: Regular Papers 58 893

    [2]

    Comeau J P, Najafizadeh L, Andrews J M, Prakash A P G, Cressler J D 2007 IEEE Microwave Wirel. Components Lett. 17 349

    [3]

    Giammello V, Ragonese E, Palmisano G 2012 IEEE Trans. Microwave Theory and Techniques 60 1676

    [4]

    Joseph A J, Cressler J D, Richey D M, Niu G F 1999 IEEE Trans. Electron Dev. 46 1347

    [5]

    Zhang Y J, Zhang W R, Guo Z J, Xing G H, Lu Z Y 2012 ICMMT Beijing, China, May 5-8, 2012 p1

    [6]

    Fox R M, Lee S G, Zweidinger D T 1993 IEEE J. Solid-State Circuits 28 678

    [7]

    Zhang Q Y, Yang Z M, Jiang Z H, Zhao C 2006 Acta Phys. Sin. 55 3106 (in Chinese) [张勤远, 杨中民, 姜中宏, 赵纯 2006 物理学报 55 3106]

    [8]

    Zhu Y B, Bao Z, Yang Y J, Cai C J 2009 Acta Phys. Sin. 58 7833 (in Chinese) [朱亚波, 鲍振, 杨玉杰, 蔡存金 2009 物理学报 58 7833]

    [9]

    Lee J G, Oh T K, Kim B, Kang B K 2001 Solid State Electron. 45 27

    [10]

    Chang Y H, Chiang C C, Lee Y C, Liu C C 2002 The Proceedings of the International Electron Devices Meeting Hong Kong, 22 June, 2001 p95

    [11]

    Zhou W, Sheu S, Liou J J, Huang C I 1996 Solid State Electron. 39 1709

    [12]

    Liu Y, Bayraktaroglu 1993 Solid State Electron. 36 125

    [13]

    Rieh J S, Greenberg D, Liu Q Z, Joseph A J, Freeman G, Ahlgren D C 2005 IEEE Trans. Electron Dev. 52 2744

    [14]

    Xiao Y, Zhang W R, Jin D Y, Chen L, Wang R Q, Xie H Y 2011 Acta Phys. Sin. 60 044402 (in Chinese) [肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云 2011 物理学报 60 044402]

    [15]

    Harame D L, Comfort J H, Cressler J D, CrabbC E F, Sun J Y C, Meyerson B S, Tice T 1995 IEEE Trans. Electron Dev. 4 455

    [16]

    Song J, Yuan J S, Schwierz F, Schipanski D 1996 Proceedings of the Third IEEE International Conference on Electronics, Circuits and Systems (ICECS) 2 876

    [17]

    Patri V S, Kumar M J 1999 IEE Proc.-Circuits Dev. Syst. 146 291

    [18]

    Jin D Y, Zhang W R, Chen L, Fu Q, Xiao Y, Wang R Q, Zhao X 2011 Chin. Phys. B 20 064401

  • [1] 张瑜洁, 张万荣, 金冬月, 陈亮, 付强, 郭振杰, 邢光辉, 路志义. Ge组分分布对基区杂质非均匀分布的SiGe HBT温度特性的影响. 物理学报, 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [2] 赵昕, 张万荣, 金冬月, 付强, 陈亮, 谢红云, 张瑜洁. 基区Ge组分分布对SiGe HBTs热学特性的影响. 物理学报, 2012, 61(13): 134401. doi: 10.7498/aps.61.134401
    [3] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [4] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200502
    [5] 陈亮, 张万荣, 金冬月, 谢红云, 肖盈, 王任卿, 丁春宝. 采用发射极非均匀指间距技术改善功率异质结双极晶体管热稳定性的研究. 物理学报, 2011, 60(7): 078501. doi: 10.7498/aps.60.078501
    [6] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [7] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [8] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [10] 熊小涛, 朱逢吾, 滕蛟, 蔡建旺, 赖武彦. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [11] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [12] 韦建军, 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究. 物理学报, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [13] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [14] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [15] 章向华, 张旭东, 徐铁峰, 聂秋华, 戴世勋, 沈 祥, 陆龙君. Er3+/Yb3+共掺碲硼硅酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [16] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [17] 许蓉, 贾光一, 刘昌龙. Cu, Zn离子注入SiO2纳米颗粒合成及氧气氛围下的热稳定性研究. 物理学报, 2014, 63(7): 078501. doi: 10.7498/aps.63.078501
    [18] 田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华. ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究. 物理学报, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [19] 张勤远, 林琼斐, 夏海平, 王金浩, 张约品. Ga2O3组分对Tm3+掺杂GeO2-Ga2O3-Li2O-BaO-La2O3玻璃的光谱性能影响. 物理学报, 2008, 57(4): 2554-2561. doi: 10.7498/aps.57.2554
    [20] 李 岩, 陈庆永, 姜宏伟, 王艾玲, 郑 鹉. PtMn层厚度对NiFe/PtMn双层膜交换偏置形成及热稳定性的影响. 物理学报, 2006, 55(12): 6647-6650. doi: 10.7498/aps.55.6647
  • 引用本文:
    Citation:
计量
  • 文章访问数:  848
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 修回日期:  2013-01-15
  • 刊出日期:  2013-05-20

新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管

  • 1. 北京工业大学电子信息与控制工程学院, 北京 100124
    基金项目: 

    国家自然科学基金(批准号: 61006059, 60776051, 61006049)、 北京市自然科学基金(批准号: 4082007)、 北京市优秀跨世纪人才基金(批准号: 67002013200301)、 北京市教委科技发展计划(批准号: KM200710005015, KM200910005001)和 北京市属市管高等学校人才强教服务北京计划资助的课题.

摘要: 宽温区大电流下的热不稳定性严重制约着功率SiGe 异质结双极晶体管 (HBT) 在射频和微波电路中的应用.为改善器件的热不稳定性, 本文利用SILVACO TCAD建立的多指功率SiGe HBT模型, 分析了器件纵向结构中基区Ge组分分布对微波功率SiGe HBT电学特性和热学特性的影响. 研究表明, 对于基区Ge组分为阶梯分布的HBT, 由于Ge组分缓变引入了少子加速电场, 使它与均匀基区Ge组分HBT相比, 具有更高的特征频率fT, 且电流增益β和fT随温度变化变弱, 这有利于防止器件在宽温区工作时电学特性的漂移.同时, 器件整体温度有所降低, 但器件各指温度分布均匀性较差.考虑多指HBT各发射极指散热能力存在差异, 在器件纵向结构设计为基区Ge组分阶梯分布的同时, 对其横向版图进行发射极指间距渐变结构设计, 用于改善器件各指温度分布的均匀性, 进而提高HBT的热稳定性.结果表明, 与基区Ge组分为均匀分布的等发射极指间距结构HBT相比, 新器件各指温度分布均匀性明显改善, fT保持了较高的值, 且β和fT 随温度变化不敏感, 热不稳定性得到显著改善, 显示了新器件在宽温区大电流下工作的优越性.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回