搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矢量声纳高速运动目标稳健高分辨方位估计

梁国龙 马巍 范展 王逸林

矢量声纳高速运动目标稳健高分辨方位估计

梁国龙, 马巍, 范展, 王逸林
PDF
导出引用
  • 针对水声矢量信号处理框架中的高速运动目标低信噪 比小快拍条件下的稳健高分辨方位估计问题, 将压缩感知技术应用于水声矢量信号空间谱估计模型中. 结合声矢量传感器结构特性, 探讨了基于声压振速联合处理的广义时域滤波方法; 结合矩阵空域预滤波理论, 设计了基于阻带约束通带均方误差最大值最小的空域滤波器, 研究了矢量声纳空域预滤波方法; 结合以上分析, 提出了基于压缩感知技术的时空联合滤波高分辨方位估计方法, 给出了方法的数学模型、物理解释及具体实施步骤.理论分析和计算机仿真试验表明, 新方法对于小快拍数 条件下的矢量声纳高速运动目标高分辨方位估计问题, 具有较低的双目标分辨门限和较高的估计精度, 有着良好的应用前景.湖上试验验证了方法的有效性.
    • 基金项目: 国家自然科学基金(批准号: 51279043)资助的课题.
    [1]

    Nehorai A, Paldi E 1994 IEEE Trans. on SP 42 2481

    [2]

    Hui J Y, Liu H, Yu H B, Fan M Y 2000 Acta Acustica 25 303 (in Chinese) [惠俊英, 刘宏, 余华兵, 范敏毅 2000 声学学报 25 303]

    [3]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 4302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 4302]

    [4]

    Yang S E 2003 J. Harbin Engin. Univ. 24 591 (in Chinese) [杨士莪 2003 哈尔滨工程大学学报 24 591]

    [5]

    Wu Y Q 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [吴艳群 2011 博士学位论文 (长沙: 国防科学技术大学)]

    [6]

    Sun G Q, Li Q H 2004 Acta Acustica 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 24 491]

    [7]

    Chen X H 2004 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [陈新华 2004 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [8]

    Schmidt R O 1986 IEEE Trans. on AP 34 276

    [9]

    Capon J 1969 Proceedings of the IEEE 57 1408

    [10]

    Roy R, Kailath T 1989 IEEE Trans. on ASAP 37 984

    [11]

    Sarkar T K, Sangruji N 1989 IEEE Trans. on ASAP 37 940

    [12]

    Sarkar T K 2003 Smart Antennas (1st Ed.) (New Jersey: John Wiley & Sons Inc.) p52

    [13]

    Sarkar T K, Koh J, Adve R, Schneible R A, Wicks M C, Choi S, Salazar-Palma M 2000 Antennas and Propagation Magazine 42 39

    [14]

    Sarkar T K, Sangruji N, Micheal C W 1998 Digital Signal Processing 8 114

    [15]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [16]

    Candes E J, Walkin M B 2008 IEEE Signal Processing Magazine 25 21

    [17]

    Candes E J, Romberg, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [18]

    Candes E J, Tao T 2006 IEEE Trans. Inform. Theory 52 5406

    [19]

    Candes E J, Romberg, Tao T 2006 Comm. Pure Appl. Math. 59 1207

    [20]

    Malioutov D M 2003 M. S. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [21]

    Malioutov D M, Cetin M, Willsky A S 2005 IEEE Trans. on SP 53 3010

    [22]

    Fu J S 2012 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [付金山 2012 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [23]

    Yan S F, Ma Y L 2006 Sci. China Inf. Sci. 36 153 (in Chinese) [鄢社锋, 马远良 2006 中国科学·信息科学 36 153]

    [24]

    Gershman A B 1998 IEEE Trans. on SP. 44 361

  • [1]

    Nehorai A, Paldi E 1994 IEEE Trans. on SP 42 2481

    [2]

    Hui J Y, Liu H, Yu H B, Fan M Y 2000 Acta Acustica 25 303 (in Chinese) [惠俊英, 刘宏, 余华兵, 范敏毅 2000 声学学报 25 303]

    [3]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 4302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 4302]

    [4]

    Yang S E 2003 J. Harbin Engin. Univ. 24 591 (in Chinese) [杨士莪 2003 哈尔滨工程大学学报 24 591]

    [5]

    Wu Y Q 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [吴艳群 2011 博士学位论文 (长沙: 国防科学技术大学)]

    [6]

    Sun G Q, Li Q H 2004 Acta Acustica 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 24 491]

    [7]

    Chen X H 2004 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [陈新华 2004 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [8]

    Schmidt R O 1986 IEEE Trans. on AP 34 276

    [9]

    Capon J 1969 Proceedings of the IEEE 57 1408

    [10]

    Roy R, Kailath T 1989 IEEE Trans. on ASAP 37 984

    [11]

    Sarkar T K, Sangruji N 1989 IEEE Trans. on ASAP 37 940

    [12]

    Sarkar T K 2003 Smart Antennas (1st Ed.) (New Jersey: John Wiley & Sons Inc.) p52

    [13]

    Sarkar T K, Koh J, Adve R, Schneible R A, Wicks M C, Choi S, Salazar-Palma M 2000 Antennas and Propagation Magazine 42 39

    [14]

    Sarkar T K, Sangruji N, Micheal C W 1998 Digital Signal Processing 8 114

    [15]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [16]

    Candes E J, Walkin M B 2008 IEEE Signal Processing Magazine 25 21

    [17]

    Candes E J, Romberg, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [18]

    Candes E J, Tao T 2006 IEEE Trans. Inform. Theory 52 5406

    [19]

    Candes E J, Romberg, Tao T 2006 Comm. Pure Appl. Math. 59 1207

    [20]

    Malioutov D M 2003 M. S. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [21]

    Malioutov D M, Cetin M, Willsky A S 2005 IEEE Trans. on SP 53 3010

    [22]

    Fu J S 2012 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [付金山 2012 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [23]

    Yan S F, Ma Y L 2006 Sci. China Inf. Sci. 36 153 (in Chinese) [鄢社锋, 马远良 2006 中国科学·信息科学 36 153]

    [24]

    Gershman A B 1998 IEEE Trans. on SP. 44 361

  • [1] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [2] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [3] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [4] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [5] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [6] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [9] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [10] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [11] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [12] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [13] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法. 物理学报, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [14] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201019
    [15] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [16] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [17] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [18] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [19] 石航, 王丽丹. 一种基于压缩感知和多维混沌系统的多过程图像加密方案. 物理学报, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [20] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1308
  • PDF下载量:  734
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2013-01-31
  • 刊出日期:  2013-07-05

矢量声纳高速运动目标稳健高分辨方位估计

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001
    基金项目: 

    国家自然科学基金(批准号: 51279043)资助的课题.

摘要: 针对水声矢量信号处理框架中的高速运动目标低信噪 比小快拍条件下的稳健高分辨方位估计问题, 将压缩感知技术应用于水声矢量信号空间谱估计模型中. 结合声矢量传感器结构特性, 探讨了基于声压振速联合处理的广义时域滤波方法; 结合矩阵空域预滤波理论, 设计了基于阻带约束通带均方误差最大值最小的空域滤波器, 研究了矢量声纳空域预滤波方法; 结合以上分析, 提出了基于压缩感知技术的时空联合滤波高分辨方位估计方法, 给出了方法的数学模型、物理解释及具体实施步骤.理论分析和计算机仿真试验表明, 新方法对于小快拍数 条件下的矢量声纳高速运动目标高分辨方位估计问题, 具有较低的双目标分辨门限和较高的估计精度, 有着良好的应用前景.湖上试验验证了方法的有效性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回