搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锐钛矿金红石的高温原位X射线衍射研究

王玲 王河锦 李婷

锐钛矿金红石的高温原位X射线衍射研究

王玲, 王河锦, 李婷
PDF
导出引用
  • 对TiO2粉末进行了空气和真空条件下从室温到1200℃的加热原位X射线衍射实验, 得到了空气和真空条件下微米级锐钛矿颗粒转变为金红石的起始温度分别为850℃ 和855℃; 分别修正了空气条件下锐钛矿在(27850℃)范围和金红石在(9001200℃) 范围内的晶胞参数和真空条件下锐钛矿在(27850℃)范围和金红石在(9501200℃) 范围的晶胞参数, 从而得到了晶胞参数随温度变化的关系, 得到了锐钛矿和金红石在空气中和真空中的热膨胀系数, 并总结了热膨胀系数随温度变化的规律. 室温下锐钛矿在空气条件下的热膨胀系数为 a=4.5506310-6/℃, c=7.754310-6/℃, =16.8583610-6/℃; 真空下为 a=4.6942910-6/℃, c=9.0285010-6/℃, =18.6968810-6/℃. 室温下, 金红石在空气条件下的热膨胀系数为 a=6.8124310-6/℃, c=8.7164410-6/℃, =22.2217810-6/℃; 真空条件下为 a=6.0583410-6/℃, c= 8.3928010-6/℃, =20.5236210-6/℃.
    • 基金项目: 国家自然科学基金(批准号: 40972038, 40872034)资助的课题.
    [1]

    Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3

    [2]

    Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217

    [3]

    Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932

    [4]

    Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607

    [5]

    Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327

    [6]

    Ikezawa S,Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514

    [7]

    Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese) [王孔嘉, 胡林华, 戴松元 2005 物理学报 54 1914]

    [8]

    Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin. 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 物理学报 51 2793]

    [9]

    Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305

    [10]

    Abdel Aal A 2008 Mater. Sci. Eng. A 474 181

    [11]

    Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391

    [12]

    José Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245

    [13]

    Gribb A A, Banfield J F 1997 Am. Mineral. 82 717

    [14]

    Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931

    [15]

    Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37

    [16]

    Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学学报 23 1121]

    [17]

    Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989

    [18]

    Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]

    [19]

    Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708

    [20]

    Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124

    [21]

    Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273

    [22]

    Meagher E P, Lager G A 1979 Can. Mineral. 17 77

    [23]

    Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305

    [24]

    Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352

    [25]

    Wang H J 1994 J. Appl. Crystallogr. 27 716

    [26]

    Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128

  • [1]

    Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3

    [2]

    Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217

    [3]

    Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932

    [4]

    Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607

    [5]

    Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327

    [6]

    Ikezawa S,Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514

    [7]

    Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese) [王孔嘉, 胡林华, 戴松元 2005 物理学报 54 1914]

    [8]

    Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin. 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 物理学报 51 2793]

    [9]

    Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305

    [10]

    Abdel Aal A 2008 Mater. Sci. Eng. A 474 181

    [11]

    Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391

    [12]

    José Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245

    [13]

    Gribb A A, Banfield J F 1997 Am. Mineral. 82 717

    [14]

    Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931

    [15]

    Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37

    [16]

    Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学学报 23 1121]

    [17]

    Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989

    [18]

    Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]

    [19]

    Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708

    [20]

    Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124

    [21]

    Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273

    [22]

    Meagher E P, Lager G A 1979 Can. Mineral. 17 77

    [23]

    Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305

    [24]

    Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352

    [25]

    Wang H J 1994 J. Appl. Crystallogr. 27 716

    [26]

    Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128

  • [1] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [2] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [3] 宋功保, 刘福生, 彭同江, 梁敬魁, 饶光辉. 金属离子掺杂对TiO2/白云母纳米复合材料中TiO2的颗粒形态及相组成的影响. 物理学报, 2002, 51(12): 2793-2797. doi: 10.7498/aps.51.2793
    [4] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [5] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算. 物理学报, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [6] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [7] 侯兴刚, 刘安东. V+注入锐钛矿TiO2第一性原理研究. 物理学报, 2007, 56(8): 4896-4900. doi: 10.7498/aps.56.4896
    [8] 许素娟, 门守强, 王 彪, 陆坤权. TiO2包覆石墨颗粒/硅油电流变液的研究. 物理学报, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
    [9] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究. 物理学报, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [10] 张 勇, 唐超群, 戴 君. 锐钛矿TiO2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验. 物理学报, 2005, 54(1): 323-327. doi: 10.7498/aps.54.323
    [11] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [12] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质. 物理学报, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [13] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200929
    [14] 李晓杰. 热膨胀型固体物态方程. 物理学报, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
    [15] 宋红强, 陈延学, 任妙娟, 季 刚. Ti1-xCoxO2铁磁性半导体薄膜研究. 物理学报, 2005, 54(1): 369-372. doi: 10.7498/aps.54.369
    [16] 闫冠云, 田强, 黄朝强, 顾小敏, 孙光爱, 陈波, 黄明, 聂福德, 柳义, 李秀宏. 热损伤奥克托金(HMX) 缺陷的X射线小角散射研究. 物理学报, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [17] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃. 基于原位X射线衍射技术的动态晶格响应测量方法研究. 物理学报, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [18] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [19] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [20] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1543
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-19
  • 修回日期:  2013-04-04
  • 刊出日期:  2013-07-05

锐钛矿金红石的高温原位X射线衍射研究

  • 1. 北京大学地球与空间科学学院, 北京 100871
    基金项目: 

    国家自然科学基金(批准号: 40972038, 40872034)资助的课题.

摘要: 对TiO2粉末进行了空气和真空条件下从室温到1200℃的加热原位X射线衍射实验, 得到了空气和真空条件下微米级锐钛矿颗粒转变为金红石的起始温度分别为850℃ 和855℃; 分别修正了空气条件下锐钛矿在(27850℃)范围和金红石在(9001200℃) 范围内的晶胞参数和真空条件下锐钛矿在(27850℃)范围和金红石在(9501200℃) 范围的晶胞参数, 从而得到了晶胞参数随温度变化的关系, 得到了锐钛矿和金红石在空气中和真空中的热膨胀系数, 并总结了热膨胀系数随温度变化的规律. 室温下锐钛矿在空气条件下的热膨胀系数为 a=4.5506310-6/℃, c=7.754310-6/℃, =16.8583610-6/℃; 真空下为 a=4.6942910-6/℃, c=9.0285010-6/℃, =18.6968810-6/℃. 室温下, 金红石在空气条件下的热膨胀系数为 a=6.8124310-6/℃, c=8.7164410-6/℃, =22.2217810-6/℃; 真空条件下为 a=6.0583410-6/℃, c= 8.3928010-6/℃, =20.5236210-6/℃.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回