搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学模拟H原子与Si的表面相互作用

柯川 赵成利 苟富均 赵勇

分子动力学模拟H原子与Si的表面相互作用

柯川, 赵成利, 苟富均, 赵勇
PDF
导出引用
导出核心图
  • 通过分子动力学模拟了入射能量对H原子与晶Si表面相互作用的影响. 通过模拟数据与实验数据的比较, 得到H原子吸附率随入射量的增加 呈先增加后趋于平衡的趋势. 沉积的H原子在Si表面形成一层氢化非晶硅薄膜, 刻蚀产物(H2, SiH2, SiH3和SiH4)对H原子吸附率趋于平衡有重要影响, 并且也决定了样品的表面粗糙度. 当入射能量为1 eV时, 样品表面粗糙度最小. 随着入射能量的增加, 氢化非晶硅薄膜中各成分(SiH, SiH2, SiH3)的量以及分布均有所变化.
    • 基金项目: 国际热核聚变实验堆(ITER)计划专项(批准号: 2009GB104006)和贵州省优秀青年科技人才培养计划(批准号: 700968101)资助的课题.
    [1]

    Michael A L, Allan J L 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp481-501 (in Chinese) [迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 2007 等离子体放电原理与材料处理(北京: 科学出版社)第481-501页]

    [2]

    Zhao H Q 1993 Plasma Chemisty and Processing (Hefei: Press of University of Science and Technology of China) pp73-89 (in Chinese) [赵化侨 1993 等离子体化学与工艺(合肥: 中国科学技术大学出版社) 第73-89页]

    [3]

    Boland J J 1990 Phys. Rev. Lett. 65 3325

    [4]

    Pangal K, Sturm J C, Wagner S, Byklimanli T H 1999 J. Appl. Phys. 85 1900

    [5]

    Gou F, Neyts E, Eckert M, Tinck S, Bogaerts A 2010 J. Appl. Phys. 107 113305

    [6]

    Gou F, Chuanliang M, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517

    [7]

    Zhang Z, Dai Y, Yu L, Guo M, Huang B, Whangbo M H 2012 Nanoscale 4 1592

    [8]

    Zhang Z, Dai Y, Huang B, Whangbo M H 2010 Appl. Phys. Lett 96 062505

    [9]

    He P N, Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均 2011 物理学报 60 045209]

    [10]

    Ning J P, L X D, Zhao C L, Qin Y M, He P N, Bogaerts A, Gou F J 2010 Acta Phys. Sin. 59 7225 (in Chinese) [宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A, 苟富君 2010物理学报 59 7225]

    [11]

    Ramalingam S, Maroudas D, Aydil E S 1998 J. Appl. Phys. 84 3895

    [12]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62

    [13]

    Ramalingam S, Maroudas D, Aydil E S 1998 Appl. Phys. Lett. 72 578

    [14]

    Oura K, Yamane J, Umezawa K, Naitoh M, Shoji F, Hanawa T 1990 Phys. Rev. B 41 1200

    [15]

    Oura K, Naitoh M, Shoji F, Yamane J, Umezawa K, Hanawa T 1990 Nucl. Instrum. Meth. Phys. Res. B 45 199

    [16]

    Ohira T, Ukai O, Adachi T, Takeuch i Y, Murata M 1995 Phys. Rev. B 52 8283

    [17]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [18]

    Tersoff J 1988 Phys. Rev. B 38 9902

    [19]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [20]

    Gou F, Chen L Z T, Meng C, Qian Q 2007 Appl. Phys. A 88 385

    [21]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 4250

    [22]

    Berendsen H J C, Postma J PM, van Gunsteren WF, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684

    [23]

    Gou F, Meng C L, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517

    [24]

    Lu X, Ning J, Qin Y, Qiu Q, Chuanwu Z, Ying Y, Ming J, Gou F 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3242

  • [1]

    Michael A L, Allan J L 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp481-501 (in Chinese) [迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 2007 等离子体放电原理与材料处理(北京: 科学出版社)第481-501页]

    [2]

    Zhao H Q 1993 Plasma Chemisty and Processing (Hefei: Press of University of Science and Technology of China) pp73-89 (in Chinese) [赵化侨 1993 等离子体化学与工艺(合肥: 中国科学技术大学出版社) 第73-89页]

    [3]

    Boland J J 1990 Phys. Rev. Lett. 65 3325

    [4]

    Pangal K, Sturm J C, Wagner S, Byklimanli T H 1999 J. Appl. Phys. 85 1900

    [5]

    Gou F, Neyts E, Eckert M, Tinck S, Bogaerts A 2010 J. Appl. Phys. 107 113305

    [6]

    Gou F, Chuanliang M, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517

    [7]

    Zhang Z, Dai Y, Yu L, Guo M, Huang B, Whangbo M H 2012 Nanoscale 4 1592

    [8]

    Zhang Z, Dai Y, Huang B, Whangbo M H 2010 Appl. Phys. Lett 96 062505

    [9]

    He P N, Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均 2011 物理学报 60 045209]

    [10]

    Ning J P, L X D, Zhao C L, Qin Y M, He P N, Bogaerts A, Gou F J 2010 Acta Phys. Sin. 59 7225 (in Chinese) [宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A, 苟富君 2010物理学报 59 7225]

    [11]

    Ramalingam S, Maroudas D, Aydil E S 1998 J. Appl. Phys. 84 3895

    [12]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62

    [13]

    Ramalingam S, Maroudas D, Aydil E S 1998 Appl. Phys. Lett. 72 578

    [14]

    Oura K, Yamane J, Umezawa K, Naitoh M, Shoji F, Hanawa T 1990 Phys. Rev. B 41 1200

    [15]

    Oura K, Naitoh M, Shoji F, Yamane J, Umezawa K, Hanawa T 1990 Nucl. Instrum. Meth. Phys. Res. B 45 199

    [16]

    Ohira T, Ukai O, Adachi T, Takeuch i Y, Murata M 1995 Phys. Rev. B 52 8283

    [17]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [18]

    Tersoff J 1988 Phys. Rev. B 38 9902

    [19]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [20]

    Gou F, Chen L Z T, Meng C, Qian Q 2007 Appl. Phys. A 88 385

    [21]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 4250

    [22]

    Berendsen H J C, Postma J PM, van Gunsteren WF, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684

    [23]

    Gou F, Meng C L, Zhouling Z T, Qian Q 2007 Appl. Surf. Sci. 253 8517

    [24]

    Lu X, Ning J, Qin Y, Qiu Q, Chuanwu Z, Ying Y, Ming J, Gou F 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3242

  • [1] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究. 物理学报, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [2] 翟世铭, 廖黄盛, 周耐根, 黄海宾, 周浪. a-Si:H薄膜中SiyHx结构组态的原子模拟研究. 物理学报, 2020, 69(7): 076801. doi: 10.7498/aps.69.20191275
    [3] 周炳卿, 吴忠华, 陈 兴, 刘丰珍, 朱美芳, 周玉琴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [4] 邵建达, 范正修, 易 葵, 侯海虹, 孙喜莲, 申雁鸣. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [5] 刘美林, 张宗宁, 李蔚, 祁阳, 张林, 赵骞. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [6] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [7] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [8] 黄晓玉, 程新路, 徐嘉靖, 吴卫东. Be原子在Be基底上的沉积过程研究. 物理学报, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [9] 廖乃镘, 李 伟, 蒋亚东, 吴志明, 匡跃军, 祁康成, 李世彬. 椭偏透射法测量氢化非晶硅薄膜厚度和光学参数. 物理学报, 2008, 57(3): 1542-1547. doi: 10.7498/aps.57.1542
    [10] 罗 志, 林璇英, 林舜辉, 余楚迎, 林揆训, 余云鹏, 谭伟锋. 氢化非晶硅薄膜中氢含量及键合模式的红外分析. 物理学报, 2003, 52(1): 169-174. doi: 10.7498/aps.52.169
    [11] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [12] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [14] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [15] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [16] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [17] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [18] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究 . 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [19] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [20] 何贤昶, 胡晓君, 戴永兵, 沈荷生, 张志明, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究. 物理学报, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1103
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-26
  • 修回日期:  2013-04-18
  • 刊出日期:  2013-08-05

分子动力学模拟H原子与Si的表面相互作用

  • 1. 西南交通大学超导与新能源研究开发中心, 材料先进技术教育部重点实验室, 成都 610031;
  • 2. 贵州大学理学院, 等离子体与器壁相互作用研究所, 贵阳 550025;
  • 3. 四川大学原子核科学技术研究所, 辐射物理及技术教育部重点实验室, 成都 610064
    基金项目: 

    国际热核聚变实验堆(ITER)计划专项(批准号: 2009GB104006)和贵州省优秀青年科技人才培养计划(批准号: 700968101)资助的课题.

摘要: 通过分子动力学模拟了入射能量对H原子与晶Si表面相互作用的影响. 通过模拟数据与实验数据的比较, 得到H原子吸附率随入射量的增加 呈先增加后趋于平衡的趋势. 沉积的H原子在Si表面形成一层氢化非晶硅薄膜, 刻蚀产物(H2, SiH2, SiH3和SiH4)对H原子吸附率趋于平衡有重要影响, 并且也决定了样品的表面粗糙度. 当入射能量为1 eV时, 样品表面粗糙度最小. 随着入射能量的增加, 氢化非晶硅薄膜中各成分(SiH, SiH2, SiH3)的量以及分布均有所变化.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回