搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波频段表面等离子激元波导滤波器的实验研究

王五松 张利伟 冉佳 张冶文

微波频段表面等离子激元波导滤波器的实验研究

王五松, 张利伟, 冉佳, 张冶文
PDF
导出引用
导出核心图
  • 基于理论分析, 实验研究了二维磁单负材料/双正材料/磁单负材料表面等离子波导的滤波效应. 研究表明, 该波导结构具有低通滤波性质, 引入分支缺陷之后, 由于谐振效应该波导具有带阻滤波效应. 分支缺陷相当于亚波长谐振腔, 谐振腔的长度决定带阻滤波器的中心频率, 而中心频率几乎不受缺陷位置的影响; 滤波器透射率下降的幅度由耦合距离决定. 通过引入谐振腔及改变谐振腔的长度、数量以及耦合间距等参数, 可以实现可调节的表面等离子波导滤波器. 实验结果与理论分析符合得很好, 该性质将在可调的单通道或多通道带阻滤波器件中具有潜在的应用价值.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB922001);国家自然科学基金(批准号:10904032);河南省高等学校青年骨干教师资助计划项目(批准号:2012GGJS-060)和河南理工大学杰出青年基金项目(批准号:J2013-09)资助的课题.
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [3]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 物理学报 61 137301]

    [4]

    Stegeman G I, Wallis R F, Maradudin A A 1983 Opt. Lett. 8 386

    [5]

    Veronis G, Fan S H 2005 Appl. Phys. Lett. 87 131102

    [6]

    Han Z, Liu L, Erik F 2006 Opt. Commun. 259 690

    [7]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [8]

    Zhai G H, Hong W, Wu K, Wei J 2010 Acta Electron. Sin. 38 825 (in Chinese) [翟国华, 洪伟, 吴柯, 韦婧 2010 电子学报 38 825]

    [9]

    Gong Y K, Wang L R, Hu X H, Li X H, Liu X M 2009 Opt. Express 17 13727

    [10]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096

    [11]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [12]

    Liu L, Hao X, Ye Y T, Liu J X, Chen Z L, Song Y C, Luo Y, Zhang J, Tan L 2012 Opt. Commun. 285 2558

    [13]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [14]

    Lu W T, Savo S, Casse B D F, Sridhar S 2009 Microw. Opt. Techn. Lett. 51 2705

    [15]

    Zhang L W, Xu J P, He L, Qiao W T 2010 Acta Phys. Sin. 59 7863 (in Chinese) [张利伟, 许静平, 赫丽, 乔文涛 2010 物理学报 59 7863]

    [16]

    Iyer A K, Kremer P C, Eleftheriade G V 2003 Opt. Express 11 696

    [17]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B 19 027301

    [18]

    Ruppin R 2001 J. Phys.: Condens. Matter 13 1811

    [19]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [20]

    Lee P H, Lan Y C 2010 Plasmonics 5 417

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [3]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 物理学报 61 137301]

    [4]

    Stegeman G I, Wallis R F, Maradudin A A 1983 Opt. Lett. 8 386

    [5]

    Veronis G, Fan S H 2005 Appl. Phys. Lett. 87 131102

    [6]

    Han Z, Liu L, Erik F 2006 Opt. Commun. 259 690

    [7]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [8]

    Zhai G H, Hong W, Wu K, Wei J 2010 Acta Electron. Sin. 38 825 (in Chinese) [翟国华, 洪伟, 吴柯, 韦婧 2010 电子学报 38 825]

    [9]

    Gong Y K, Wang L R, Hu X H, Li X H, Liu X M 2009 Opt. Express 17 13727

    [10]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096

    [11]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [12]

    Liu L, Hao X, Ye Y T, Liu J X, Chen Z L, Song Y C, Luo Y, Zhang J, Tan L 2012 Opt. Commun. 285 2558

    [13]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [14]

    Lu W T, Savo S, Casse B D F, Sridhar S 2009 Microw. Opt. Techn. Lett. 51 2705

    [15]

    Zhang L W, Xu J P, He L, Qiao W T 2010 Acta Phys. Sin. 59 7863 (in Chinese) [张利伟, 许静平, 赫丽, 乔文涛 2010 物理学报 59 7863]

    [16]

    Iyer A K, Kremer P C, Eleftheriade G V 2003 Opt. Express 11 696

    [17]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B 19 027301

    [18]

    Ruppin R 2001 J. Phys.: Condens. Matter 13 1811

    [19]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [20]

    Lee P H, Lan Y C 2010 Plasmonics 5 417

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1532
  • PDF下载量:  819
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-14
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-09-05

微波频段表面等离子激元波导滤波器的实验研究

  • 1. 同济大学物理系先进微结构材料教育部重点实验室, 上海 200092;
  • 2. 河南理工大学物理化学学院, 焦作 454000;
  • 3. 同济大学电气工程系, 上海 200092
    基金项目: 

    国家重点基础研究发展计划(批准号:2011CB922001)

    国家自然科学基金(批准号:10904032)

    河南省高等学校青年骨干教师资助计划项目(批准号:2012GGJS-060)和河南理工大学杰出青年基金项目(批准号:J2013-09)资助的课题.

摘要: 基于理论分析, 实验研究了二维磁单负材料/双正材料/磁单负材料表面等离子波导的滤波效应. 研究表明, 该波导结构具有低通滤波性质, 引入分支缺陷之后, 由于谐振效应该波导具有带阻滤波效应. 分支缺陷相当于亚波长谐振腔, 谐振腔的长度决定带阻滤波器的中心频率, 而中心频率几乎不受缺陷位置的影响; 滤波器透射率下降的幅度由耦合距离决定. 通过引入谐振腔及改变谐振腔的长度、数量以及耦合间距等参数, 可以实现可调节的表面等离子波导滤波器. 实验结果与理论分析符合得很好, 该性质将在可调的单通道或多通道带阻滤波器件中具有潜在的应用价值.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回