搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主成分变换的图像稀疏度估计方法

马原 吕群波 刘扬阳 钱路路 裴琳琳

引用本文:
Citation:

基于主成分变换的图像稀疏度估计方法

马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳

Image sparsity evaluation based on principle component analysis

Ma Yuan, Lü Qun-Bo, Liu Yang-Yang, Qian Lu-Lu, Pei Lin-Lin
PDF
导出引用
  • 压缩感知理论基于信号的稀疏性和可压缩性, 突破传统Nyquist采样频率的限制, 以较低的数据量对信号进行采样和高概率重构. 在压缩感知理论中, 信号的稀疏度确定了稀疏采样的最低数据量, 是验证采样方法及重构方法优劣的重要参数. 在实际研究过程中, 图像稀疏度通常未知, 这就可能导致过采样或欠采样的情况, 从而无法验证采样方法及重构方法的优劣. 因此, 快速而客观地估计图像的稀疏度对于压缩感知理论研究来说意义重大. 本文分析了基于小波变换的图像稀疏化表示方法, 通过遍历采样和重构得到基于小波变换方法的图像稀疏度, 但过程复杂, 而且结果的准确性依赖于小波基和变换尺度的选择. 本文通过压缩感知理论对主成分变换进行阐述, 在基于主成分变换系数近似为正态函数的假设下, 建立了图像稀疏度与系数函数方差间的线性关系, 并通过多组图像数据进行仿真验证, 结果表明线性关系的正确性. 通过分析和仿真可以看出, 基于主成分变换的稀疏度估计方法比小波变换简单、快速、客观, 对压缩感知理论研究有重要的应用价值.
    In compressive sensing, signal sparsity is an important parameter which influences the number of data sampling in reconstruction process and the quantity of the reconstructed result. But in practice, undersampled and oversampled phenomenon will occur because of the unknown sparsity, which may lose the advantages of compressive sensing. So how to determine the image sparsity quickly and accuratly is significant in the compressive sensing process. In this paper, we calculate the image sparsity based on the data acquired during compressive sensing recontruction projection which sparses the origin image in wavelets domain, but we find that its procession is complex, and the final results are seriously influenced by wavelet basis function and the transform scales. We then introduce the principle component analysis (PCA) theory combined with compressive sensing, and establish a linear relationship between image sparsity and coefficient founction variance based on the assumption that PCA is of approximately normal distribution. Multiple sets of experiment data verify the correctness of the linear relationship mentioned above. Through previous analysis and simulation, the sparsity estimation based on PCA has an important practical value for compressive sensing study.
    • 基金项目: 国家杰出青年科学基金(批准号: 61225024)和国家高技术研究发展计划(批准号: 2012AA7012022)资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225024) and the National High Technology Research and Development Program of China (Grant No. 2011AA7012022).
    [1]

    Donoho D 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Zhao X F, Huang S X, Xiang J, Shi W L 2011 Chin. Phys. B 20 099201

    [3]

    Liu Y Y, L Q B, Zeng X R, Huang M, Xiang L B 2013 Acta Phys. Sin. 62 060203 (in Chinese) [刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌 2013 物理学报 62 060203]

    [4]

    Jin X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [5]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 物理学报 57 6666]

    [6]

    Candés E J, Romberg J, Tao T 2006 IEEE Trans. Signal Process. 52 489

    [7]

    Duarte M F, Baraniuk R G 2012 IEEE Trans. Image Proc. 21 494

    [8]

    Jin L X, Zhang R F 2013 Chin. Phys. B 22 064203

    [9]

    Tsaig Y, Donoho D L 2006 Signal Process. 86 549

    [10]

    Duarte M F 2008 IEEE Signal Proc. Mag. 25 83

    [11]

    Zhang H M, Wang L Y, Yan B, Li L, Xi X Q, Liu L Z 2013 Chin. Phys. B 22 078701

    [12]

    He L, Carin L 2009 IEEE Trans. Signal Process. 57 3488

    [13]

    Xue B, Chen X D, Zhang Y, Liu B 2011 Signal Process. 9 1085

    [14]

    Duarte M F, Wakin M, Baraniuk R G 2008 Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP) Las Vegas USA March 30-April 4, 2008 p5137

    [15]

    Hu L Y, Fan H Y 2011 Chin. Phys. B 19 074205

    [16]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

    [17]

    Ronald A D 1998 Acta Numerica 7 51

    [18]

    Kim E, Paul G 1987 Principal Component Analysis (Amsterdam: Elsevier Science Publishers) pp37-52

  • [1]

    Donoho D 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Zhao X F, Huang S X, Xiang J, Shi W L 2011 Chin. Phys. B 20 099201

    [3]

    Liu Y Y, L Q B, Zeng X R, Huang M, Xiang L B 2013 Acta Phys. Sin. 62 060203 (in Chinese) [刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌 2013 物理学报 62 060203]

    [4]

    Jin X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [5]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 物理学报 57 6666]

    [6]

    Candés E J, Romberg J, Tao T 2006 IEEE Trans. Signal Process. 52 489

    [7]

    Duarte M F, Baraniuk R G 2012 IEEE Trans. Image Proc. 21 494

    [8]

    Jin L X, Zhang R F 2013 Chin. Phys. B 22 064203

    [9]

    Tsaig Y, Donoho D L 2006 Signal Process. 86 549

    [10]

    Duarte M F 2008 IEEE Signal Proc. Mag. 25 83

    [11]

    Zhang H M, Wang L Y, Yan B, Li L, Xi X Q, Liu L Z 2013 Chin. Phys. B 22 078701

    [12]

    He L, Carin L 2009 IEEE Trans. Signal Process. 57 3488

    [13]

    Xue B, Chen X D, Zhang Y, Liu B 2011 Signal Process. 9 1085

    [14]

    Duarte M F, Wakin M, Baraniuk R G 2008 Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP) Las Vegas USA March 30-April 4, 2008 p5137

    [15]

    Hu L Y, Fan H Y 2011 Chin. Phys. B 19 074205

    [16]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

    [17]

    Ronald A D 1998 Acta Numerica 7 51

    [18]

    Kim E, Paul G 1987 Principal Component Analysis (Amsterdam: Elsevier Science Publishers) pp37-52

  • [1] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法. 物理学报, 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [2] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [3] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [4] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [5] 赵辽英, 马启良, 厉小润. 基于HIS 小波变换和MOPSO的全色与多光谱图像融合. 物理学报, 2012, 61(19): 194204. doi: 10.7498/aps.61.194204
    [6] 余海军, 杜建明, 张秀兰. 相干态的小波变换. 物理学报, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [7] 宋军, 许业军, 范洪义. 奇偶二项式光场态的小波变换. 物理学报, 2011, 60(8): 084208. doi: 10.7498/aps.60.084208
    [8] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法. 物理学报, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [9] 符懋敬, 庄建军, 侯凤贞, 宁新宝, 展庆波, 邵毅. 基于小波变换的人体步态序列提取. 物理学报, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [10] 任磊, 陈祥光, 刘春涛. 基于小波变换的时域介电谱分析及其应用. 物理学报, 2009, 58(3): 2035-2041. doi: 10.7498/aps.58.2035
    [11] 赵文山, 何怡刚. 一种改进的开关电流滤波器实现小波变换的方法. 物理学报, 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [12] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [13] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [14] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [15] 赵 莉, 冯 稷, 翟光杰, 张利华. 小波变换在心磁信号处理中的应用. 物理学报, 2005, 54(4): 1943-1949. doi: 10.7498/aps.54.1943
    [16] 邓玉强, 邢岐荣, 郎利影, 柴 路, 王清月, 张志刚. THz波的小波变换频谱分析. 物理学报, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [17] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [18] 汪 渊, 白宣羽, 徐可为. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价. 物理学报, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [19] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [20] 宋菲君, 赵文杰, S. Jutamulia, 宋建力, 姚思一, 王 栋. Haar-Gaussian小波变换在边缘测量中的应用. 物理学报, 2003, 52(12): 3055-3060. doi: 10.7498/aps.52.3055
计量
  • 文章访问数:  5556
  • PDF下载量:  1622
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-29
  • 修回日期:  2013-07-30
  • 刊出日期:  2013-10-05

/

返回文章
返回