-
二硫化钼(MoS2)是已知的二维半导体材料中光电性能最优秀的材料之一. 单原子层厚的MoS2是禁带宽度为1.8 eV 的二维直接带隙半导体材料, 可以用来发展新型的纳米电子器件和光电功能器件. 本论文利用玻尔兹曼平衡方程输运理论研究低温时MoS2系统的电输运性质, 计算得到了MoS2电子迁移率的解析表达式. 研究发现, 低温时MoS2 的迁移率与衬底材料的介电常数的平方成正比; 与系统的电子浓度对带电杂质的浓度的比率ne/ni 成线性关系. 因此, 选用介电常数高的衬底材料, 适当提高MoS2系统的载流子浓度, 同时降低杂质的浓度, 可以有效提高MoS2系统的迁移率. 研究结果为探索以MoS2为基础的新型纳米光电器件的研究和实际应用提供了理论依据.
[1] Castro Neto A H, Novoselov K 2011 Rep. Prog. Phys. 74 082501
[2] Liu W L, Chen C, Shen Q W 2008 Chin. Phys. Lett. 25 227
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnol. 6 147
[4] Wang H, Yu L L, Lee Y H 2012 Nano Lett. 12 4674
[5] Kim S, Konar A, Hwang W S Lee J H, Lee J Y, Yang J Y, Jung C H, Kim H S, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D D, Choi W, Kim K 2012 Nature Commun. 3 1011
[6] Mak K F, C Lee H G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[8] Alam K, Lake R K 2012 IEEE Trans. Electron DEC. 59 3250
[9] Wang Q H, Kourosh K Z, Kis A, Coleman J N, Strano M S 2012 Nature Nanotechnol. 7 699
[10] Lee H S, Min S W, Chang Y G, Park M K, Nam T W, Kim H, Kim J H, Ryu S M, Im S 2012 Nano Lett. 12 3695
[11] Yang H J, Heo J S, Park S J, Song H J, Seo D H 2012 Science 336 1140
[12] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]
[13] Ye L X 2007 Semiconductor Physics (Vol. 1) (BeiJing: Higher Education Press) (in Chinese) [叶良修 2007 半导体物理学 (上卷) (北京高等教育出版社)]
[14] Lei X L, Ting C S 1985 J. Phys. C 18 77
[15] Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum Publishers) p325
[16] Zhang X L, Hayward D O, Mingos D M 2002 Catalysis Lett. 84 225
[17] Hwang E H, Adam S, Sarma S D 2007 Phys. Rev. Lett. 98 186806
[18] Novoselov K S, Geim A K, Morozov S V, Zhang D Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[19] Zhang J F, Yue H, Zhang J C, Ni J Y 2008 Sci. China F 51 780
[20] Ando T 1982 Rev. Mod. Phys. 54 437
-
[1] Castro Neto A H, Novoselov K 2011 Rep. Prog. Phys. 74 082501
[2] Liu W L, Chen C, Shen Q W 2008 Chin. Phys. Lett. 25 227
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnol. 6 147
[4] Wang H, Yu L L, Lee Y H 2012 Nano Lett. 12 4674
[5] Kim S, Konar A, Hwang W S Lee J H, Lee J Y, Yang J Y, Jung C H, Kim H S, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D D, Choi W, Kim K 2012 Nature Commun. 3 1011
[6] Mak K F, C Lee H G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[8] Alam K, Lake R K 2012 IEEE Trans. Electron DEC. 59 3250
[9] Wang Q H, Kourosh K Z, Kis A, Coleman J N, Strano M S 2012 Nature Nanotechnol. 7 699
[10] Lee H S, Min S W, Chang Y G, Park M K, Nam T W, Kim H, Kim J H, Ryu S M, Im S 2012 Nano Lett. 12 3695
[11] Yang H J, Heo J S, Park S J, Song H J, Seo D H 2012 Science 336 1140
[12] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]
[13] Ye L X 2007 Semiconductor Physics (Vol. 1) (BeiJing: Higher Education Press) (in Chinese) [叶良修 2007 半导体物理学 (上卷) (北京高等教育出版社)]
[14] Lei X L, Ting C S 1985 J. Phys. C 18 77
[15] Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum Publishers) p325
[16] Zhang X L, Hayward D O, Mingos D M 2002 Catalysis Lett. 84 225
[17] Hwang E H, Adam S, Sarma S D 2007 Phys. Rev. Lett. 98 186806
[18] Novoselov K S, Geim A K, Morozov S V, Zhang D Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[19] Zhang J F, Yue H, Zhang J C, Ni J Y 2008 Sci. China F 51 780
[20] Ando T 1982 Rev. Mod. Phys. 54 437
引用本文: |
Citation: |
计量
- 文章访问数: 2337
- PDF下载量: 950
- 被引次数: 0