搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeMn掺杂AlN薄膜的制备及其特性研究

蓝雷雷 胡新宇 顾广瑞 姜丽娜 吴宝嘉

FeMn掺杂AlN薄膜的制备及其特性研究

蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉
PDF
导出引用
  • 采用直流磁控共溅射技术, 以Ar与N2为源气体, 硅片为衬底成功地制备了Fe, Mn掺杂AlN薄膜. 利用X射线衍射和拉曼光谱研究了工作电流、靶基距离等工艺参数的改变对薄膜结构的影响. 利用扫描电子显微镜和能谱分析仪对薄膜的表面形貌和组成成分进行了分析. 利用振动样品磁强计在室温下对Fe, Mn掺杂AlN薄膜进行了磁性表征. Mn掺杂AlN薄膜表现出顺磁性的原因可能是由于Mn掺杂浓度较高, 在沉积过程部分Mn以团簇的形式存在, 反铁磁性的Mn团簇减弱了体系的铁磁交换作用. Fe掺杂AlN薄膜表现出室温铁磁性, 这可能是AlFeN三元化合物作用的结果. 随着Fe 掺杂AlN薄膜中Fe原子浓度从6.81%增加到16.17%, 其饱和磁化强度Ms由0.27 emu·cm-3逐渐下降到0.20 emu·cm-3, 而矫顽力Hc则由57 Oe增大到115 Oe (1 Oe=79.5775 A/m), 这一现象与Fe离子间距离的缩短及反铁磁耦合作用增强有关.
    • 基金项目: 国家自然科学基金 (批准号: 51272224, 11164031)资助的课题.
    [1]

    Ohno H 1998 Science 281 951

    [2]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [3]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [4]

    Prinz G A 1998 Science 282 1660

    [5]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [6]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363

    [7]

    Beschoten B, Crowell P A, Malajovich I, Awschalom D D, Matsukura F, Shen A, Ohno H 1999 Phys. Rev. Lett. 83 3073

    [8]

    Weng W X, Yan W S, Sun Z H, Yao T, Guo Y X, Wang F, Wei S Q, Zhang G B, Xu P S 2008 Acta Phys. Sin. 57 5788 (in Chinese) [翁卫祥, 闫文盛, 孙治湖, 姚涛, 郭玉献, 王峰, 韦世强, 张国斌, 徐彭寿 2008 物理学报 57 5788]

    [9]

    Liu Y Y, Liu F M, Shi X, Ding P, Zhou C C 2008 Acta Phys. Sin. 57 7274 (in Chinese) [刘妍妍, 刘发民, 石霞, 丁芃, 周传仓 2008 物理学报 57 7274]

    [10]

    Kuang A L, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为 2005 物理学报 54 2934]

    [11]

    Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X, Shi E W 2008 Chin. Phys. B 17 1371

    [12]

    Ran C J, Yang H L, Wang Y K, Hassan F M, Zhou L G, Xu X G, Jiang Y 2013 Chin. Phys. B 22 067503

    [13]

    Dong S, Zhu F 2012 Chin. Phys. B 21 097502

    [14]

    Hasegawa F, Takahashi T, Kubo K, Nannichi Y 1987 Jpn. J. Appl. Phys. 26 1555

    [15]

    Sardar K, Rao C N R 2005 Solid State Sciences 7 217

    [16]

    Gao X Q, Guo Z Y, Cao D X, Zhang Y F, Sun H Q, Deng B 2010 Acta Phys. Sin. 59 3418 (in Chinese) [高小奇, 郭志友, 曹东兴, 张宇飞, 孙慧卿, 邓贝 2010 物理学报 59 3418]

    [17]

    Kim H W, Kebede M A, Kim H S 2009 Applied Surface Science 255 7221

    [18]

    Li H, Bao H Q, Song B, Wang W J, Chen X L 2008 Solid State Communications 148 406

    [19]

    Gu L, Wu S Y, Liu H X, Singh R K, Newman N, Smith D J 2005 J. Magn. Magn. Mater. 290 1395

    [20]

    Gao X D, Jiang E Y, Liu H H, Mi W B, Li Z Q, Wu P, Bai H L 2007 Applied Surface Science 253 5431

    [21]

    Gupta R K, Ghosh K, Kahol P K 2009 Applied Surface Science 255 8926

    [22]

    Chen D, Xu D, Wang J J, Zhao B, Zhang Y F 2008 Thin Solid Films 517 986

    [23]

    Luo M C, Wang X L, Li J M, Liu H X, Wang L, Sun D Z, Zeng Y P, Lin L Y 2002 Journal of Crystal Growth 244 229

    [24]

    Lughi V, Clarke D R 2006 Appl. Phys. Lett. 89 241911

    [25]

    Kuball M, Hayes J M, Prins A D, Uden N W A, Dunstan D J, Shi Y, Edgar J H 2001 Appl. Phys. Lett. 78 724

    [26]

    Perlin P, Polian A, Suski T 1993 Phys. Rev. B 47 2874

    [27]

    Singhal R K, Dhawan M, Kumar S, Dolia S N, Xing Y T, Saitovitch E 2009 Physica B 404 3275

    [28]

    Ham M H, Yoon S, Park Y, Myoung J M 2004 Journal of Crystal Growth 271 420

    [29]

    Song Y Y, Quang P H, Pham V T, Lee K W, Yu S C 2005 J. Magn. Magn. Mater. 290 1375

    [30]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M, Johansson B, Gehring G A 2003 Nature Materials 2 673

    [31]

    Li X D, Wang X Y, Jiang X Q, Du Y C 1994 Vacuum Deposition Technology (Hangzhou: Zhejiang University Press) p109 (in Chinese) [李学丹, 万学英, 姜祥祺, 杜元成 1994 真空沉积技术 (杭州: 浙江大学出版社) 第109页]

    [32]

    Chen M, Bai X D, Huang R F, Wen L S 2000 Chinese Journal of Semiconductors 21 394 (in Chinese) [陈猛, 白雪冬, 黄荣芳, 闻立时 2000 半导体学报 21 394]

    [33]

    Liu H Y, Zeng F, Tang G S, Pan F 2013 Applied Surface Science 270 225

    [34]

    Park W K, Ortega-Hertogs R J, Moodera J S, Punnoose A, Seehra M S 2002 J. Appl. Phys. 91 8093

    [35]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

  • [1]

    Ohno H 1998 Science 281 951

    [2]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [3]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [4]

    Prinz G A 1998 Science 282 1660

    [5]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [6]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363

    [7]

    Beschoten B, Crowell P A, Malajovich I, Awschalom D D, Matsukura F, Shen A, Ohno H 1999 Phys. Rev. Lett. 83 3073

    [8]

    Weng W X, Yan W S, Sun Z H, Yao T, Guo Y X, Wang F, Wei S Q, Zhang G B, Xu P S 2008 Acta Phys. Sin. 57 5788 (in Chinese) [翁卫祥, 闫文盛, 孙治湖, 姚涛, 郭玉献, 王峰, 韦世强, 张国斌, 徐彭寿 2008 物理学报 57 5788]

    [9]

    Liu Y Y, Liu F M, Shi X, Ding P, Zhou C C 2008 Acta Phys. Sin. 57 7274 (in Chinese) [刘妍妍, 刘发民, 石霞, 丁芃, 周传仓 2008 物理学报 57 7274]

    [10]

    Kuang A L, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为 2005 物理学报 54 2934]

    [11]

    Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X, Shi E W 2008 Chin. Phys. B 17 1371

    [12]

    Ran C J, Yang H L, Wang Y K, Hassan F M, Zhou L G, Xu X G, Jiang Y 2013 Chin. Phys. B 22 067503

    [13]

    Dong S, Zhu F 2012 Chin. Phys. B 21 097502

    [14]

    Hasegawa F, Takahashi T, Kubo K, Nannichi Y 1987 Jpn. J. Appl. Phys. 26 1555

    [15]

    Sardar K, Rao C N R 2005 Solid State Sciences 7 217

    [16]

    Gao X Q, Guo Z Y, Cao D X, Zhang Y F, Sun H Q, Deng B 2010 Acta Phys. Sin. 59 3418 (in Chinese) [高小奇, 郭志友, 曹东兴, 张宇飞, 孙慧卿, 邓贝 2010 物理学报 59 3418]

    [17]

    Kim H W, Kebede M A, Kim H S 2009 Applied Surface Science 255 7221

    [18]

    Li H, Bao H Q, Song B, Wang W J, Chen X L 2008 Solid State Communications 148 406

    [19]

    Gu L, Wu S Y, Liu H X, Singh R K, Newman N, Smith D J 2005 J. Magn. Magn. Mater. 290 1395

    [20]

    Gao X D, Jiang E Y, Liu H H, Mi W B, Li Z Q, Wu P, Bai H L 2007 Applied Surface Science 253 5431

    [21]

    Gupta R K, Ghosh K, Kahol P K 2009 Applied Surface Science 255 8926

    [22]

    Chen D, Xu D, Wang J J, Zhao B, Zhang Y F 2008 Thin Solid Films 517 986

    [23]

    Luo M C, Wang X L, Li J M, Liu H X, Wang L, Sun D Z, Zeng Y P, Lin L Y 2002 Journal of Crystal Growth 244 229

    [24]

    Lughi V, Clarke D R 2006 Appl. Phys. Lett. 89 241911

    [25]

    Kuball M, Hayes J M, Prins A D, Uden N W A, Dunstan D J, Shi Y, Edgar J H 2001 Appl. Phys. Lett. 78 724

    [26]

    Perlin P, Polian A, Suski T 1993 Phys. Rev. B 47 2874

    [27]

    Singhal R K, Dhawan M, Kumar S, Dolia S N, Xing Y T, Saitovitch E 2009 Physica B 404 3275

    [28]

    Ham M H, Yoon S, Park Y, Myoung J M 2004 Journal of Crystal Growth 271 420

    [29]

    Song Y Y, Quang P H, Pham V T, Lee K W, Yu S C 2005 J. Magn. Magn. Mater. 290 1375

    [30]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M, Johansson B, Gehring G A 2003 Nature Materials 2 673

    [31]

    Li X D, Wang X Y, Jiang X Q, Du Y C 1994 Vacuum Deposition Technology (Hangzhou: Zhejiang University Press) p109 (in Chinese) [李学丹, 万学英, 姜祥祺, 杜元成 1994 真空沉积技术 (杭州: 浙江大学出版社) 第109页]

    [32]

    Chen M, Bai X D, Huang R F, Wen L S 2000 Chinese Journal of Semiconductors 21 394 (in Chinese) [陈猛, 白雪冬, 黄荣芳, 闻立时 2000 半导体学报 21 394]

    [33]

    Liu H Y, Zeng F, Tang G S, Pan F 2013 Applied Surface Science 270 225

    [34]

    Park W K, Ortega-Hertogs R J, Moodera J S, Punnoose A, Seehra M S 2002 J. Appl. Phys. 91 8093

    [35]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

  • [1] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究. 物理学报, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [2] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
    [3] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [4] 郭鸿涌, 刘宝丹, 唐宁, 罗鸿志, 李养贤, 杨伏明, 吴光恒. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响. 物理学报, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [5] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [6] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [7] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析. 物理学报, 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [8] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [9] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [10] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响. 物理学报, 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [11] 周 军, 方庆清, 王保明, 刘艳美, 李 貌, 闫方亮, 王胜男. 镁含量和热处理对Zn1-xMgxO薄膜结构和发光性能的影响. 物理学报, 2008, 57(10): 6614-6619. doi: 10.7498/aps.57.6614
    [12] 林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍. 射频溅射法制备3C-SiC和4H-SiC薄膜. 物理学报, 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [13] 王东明, 吕业刚, 宋三年, 王苗, 沈祥, 王国祥, 戴世勋, 宋志棠. Cu对用于高速相变存储器的Sb2Te薄膜的结构及相变的影响研究. 物理学报, 2015, 64(15): 156102. doi: 10.7498/aps.64.156102
    [14] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [15] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [16] 孙景阳, 王东明, 吕业刚, 王苗, 汪伊曼, 沈祥, 王国祥, 戴世勋. 应用于相变存储器的Cu-Ge3Sb2Te5薄膜的结构及相变特性研究. 物理学报, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [17] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [18] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [19] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
  • 引用本文:
    Citation:
计量
  • 文章访问数:  936
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-03
  • 修回日期:  2013-08-07
  • 刊出日期:  2013-11-05

FeMn掺杂AlN薄膜的制备及其特性研究

  • 1. 延边大学理学院物理系, 延吉 133002;
  • 2. 吉林大学超硬材料国家重点实验室, 长春 130012
    基金项目: 

    国家自然科学基金 (批准号: 51272224, 11164031)资助的课题.

摘要: 采用直流磁控共溅射技术, 以Ar与N2为源气体, 硅片为衬底成功地制备了Fe, Mn掺杂AlN薄膜. 利用X射线衍射和拉曼光谱研究了工作电流、靶基距离等工艺参数的改变对薄膜结构的影响. 利用扫描电子显微镜和能谱分析仪对薄膜的表面形貌和组成成分进行了分析. 利用振动样品磁强计在室温下对Fe, Mn掺杂AlN薄膜进行了磁性表征. Mn掺杂AlN薄膜表现出顺磁性的原因可能是由于Mn掺杂浓度较高, 在沉积过程部分Mn以团簇的形式存在, 反铁磁性的Mn团簇减弱了体系的铁磁交换作用. Fe掺杂AlN薄膜表现出室温铁磁性, 这可能是AlFeN三元化合物作用的结果. 随着Fe 掺杂AlN薄膜中Fe原子浓度从6.81%增加到16.17%, 其饱和磁化强度Ms由0.27 emu·cm-3逐渐下降到0.20 emu·cm-3, 而矫顽力Hc则由57 Oe增大到115 Oe (1 Oe=79.5775 A/m), 这一现象与Fe离子间距离的缩短及反铁磁耦合作用增强有关.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回