搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电压型双频率控制开关变换器的动力学建模与多周期行为分析

吴松荣 何圣仲 许建平 周国华 王金平

电压型双频率控制开关变换器的动力学建模与多周期行为分析

吴松荣, 何圣仲, 许建平, 周国华, 王金平
PDF
导出引用
导出核心图
  • 在断续导电模式下, 建立了电压型双频率控制开关变换器的动力学模型, 并推导了相应的特征值方程. 根据动力学模型, 采用分岔图研究了电路参数变化时变换器存在的边界碰撞分岔行为和周期2, 周期3,周期4等多周期行为, 结果表明: 变换器经历了周期1态、多周期态、周期1态的分岔路由; 周期态的转变均是由边界碰撞分岔引起的. 根据特征值方程, 采用Lyapunov指数研究了变换器的稳定性, 结果表明: 随着电路参数的变化, Lyapunov指数始终小于零, 变换器一直工作于稳定的周期态, 验证了电压型双频率控制开关变换器的周期3行为并不意味着变换器会必然发生混沌. 通过电路仿真, 分析了负载变化时变换器的时域波形、相轨图和频谱图, 验证了动力学模型的可行性和理论分析的正确性. 实验结果验证了文中的仿真结果.
    • 基金项目: 国家自然科学基金(批准号: 51177140)、四川省青年科技基金(批准号: 2013JQ0033) 和中央高校基本科研业务费专项资金 (批准号: 2682013ZT20, SWJTU11CX032) 资助的课题.
    [1]

    Chan W C Y, Tse C K 1997 IEEE Trans. Circuits Syst. I 44 1129

    [2]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [3]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits Syst. II 51 649

    [4]

    Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 物理学报 61 120501]

    [5]

    Aroudi A El, Bernadero L, Toribio E, Olivar G 1999 IEEE Trans. Circuits Syst. I 46 1374

    [6]

    Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 物理学报 60 060510]

    [7]

    Iu H H C, Tse C K, Pjevalica V, Lai Y M 2001 Int. J. Circ. Theor. Appl. 29 281

    [8]

    Zhou G H, Bao B C, Xu J P 2013 Int J Bifurcation and Chaos 23 1350062

    [9]

    Zhou Y F, Chen J N, IU H H C, Tse C K 2008 Int J Bifurcation and Chaos 18 121

    [10]

    Maity S, Tripathy D, Bhattacharya T K, Banerjee S 2007 IEEE Trans. on Circuits and Systems I 54 1120

    [11]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [周国华, 许建平, 包伯成 2010 物理学报 59 2272]

    [12]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [13]

    Zhou G H, Xu J P, Bao B C 2012 Int J Bifurcation and Chaos 22 1250008

    [14]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [15]

    Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 物理学报 62 010504]

    [16]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [17]

    He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 物理学报 62 110503]

    [18]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 物理学报 57 2842]

    [19]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 1522 (in Chinese) [王发强, 张浩, 马西奎 2008 物理学报 57 1522]

    [20]

    Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese) [王金平, 许建平, 周国华, 米长宝, 秦明 2011 物理学报 60 048402]

    [21]

    Wang J P, Xu J P, Xu Y J 2011 Acta Phys. Sin. 60 058401 (in Chinese) [王金平, 许建平, 徐扬军 2011 物理学报 60 058401]

    [22]

    Zhang X, Bao B C, Wang J P, Ma Z H, Xu J P 2012 Acta Phys. Sin. 61 160503 (in Chinese) [张希, 包伯成, 王金平, 马正华, 许建平 2012 物理学报 61 160503]

    [23]

    Wang J P, Xu J P, Qin M, Mu Q B 2003 Proceeding of the CSEE 30 1 (in Chinese) [王金平, 许建平, 秦明, 牟清波 2010 中国电机工程学报 30 1]

    [24]

    Xu J P, Wang J P 2011 IEEE Trans Industrial Electronics 58 3658

  • [1]

    Chan W C Y, Tse C K 1997 IEEE Trans. Circuits Syst. I 44 1129

    [2]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [3]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits Syst. II 51 649

    [4]

    Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 物理学报 61 120501]

    [5]

    Aroudi A El, Bernadero L, Toribio E, Olivar G 1999 IEEE Trans. Circuits Syst. I 46 1374

    [6]

    Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 物理学报 60 060510]

    [7]

    Iu H H C, Tse C K, Pjevalica V, Lai Y M 2001 Int. J. Circ. Theor. Appl. 29 281

    [8]

    Zhou G H, Bao B C, Xu J P 2013 Int J Bifurcation and Chaos 23 1350062

    [9]

    Zhou Y F, Chen J N, IU H H C, Tse C K 2008 Int J Bifurcation and Chaos 18 121

    [10]

    Maity S, Tripathy D, Bhattacharya T K, Banerjee S 2007 IEEE Trans. on Circuits and Systems I 54 1120

    [11]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [周国华, 许建平, 包伯成 2010 物理学报 59 2272]

    [12]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [13]

    Zhou G H, Xu J P, Bao B C 2012 Int J Bifurcation and Chaos 22 1250008

    [14]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [15]

    Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 物理学报 62 010504]

    [16]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [17]

    He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 物理学报 62 110503]

    [18]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 物理学报 57 2842]

    [19]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 1522 (in Chinese) [王发强, 张浩, 马西奎 2008 物理学报 57 1522]

    [20]

    Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese) [王金平, 许建平, 周国华, 米长宝, 秦明 2011 物理学报 60 048402]

    [21]

    Wang J P, Xu J P, Xu Y J 2011 Acta Phys. Sin. 60 058401 (in Chinese) [王金平, 许建平, 徐扬军 2011 物理学报 60 058401]

    [22]

    Zhang X, Bao B C, Wang J P, Ma Z H, Xu J P 2012 Acta Phys. Sin. 61 160503 (in Chinese) [张希, 包伯成, 王金平, 马正华, 许建平 2012 物理学报 61 160503]

    [23]

    Wang J P, Xu J P, Qin M, Mu Q B 2003 Proceeding of the CSEE 30 1 (in Chinese) [王金平, 许建平, 秦明, 牟清波 2010 中国电机工程学报 30 1]

    [24]

    Xu J P, Wang J P 2011 IEEE Trans Industrial Electronics 58 3658

  • [1] 史国栋, 张海明, 包伯成, 冯霏, 董伟. 脉冲序列控制双断续导电模式BIFRED变换器的动力学建模与多周期行为. 物理学报, 2015, 64(1): 010501. doi: 10.7498/aps.64.010501
    [2] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究 . 物理学报, 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [3] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究. 物理学报, 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [4] 吴松荣, 周国华, 王金平, 许建平, 何圣仲. 多频率控制开关变换器的自相似和混频现象分析. 物理学报, 2014, 63(2): 028401. doi: 10.7498/aps.63.028401
    [5] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔. 物理学报, 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [6] 杨 汝, 褚利丽, 张 波. 开关变换器倍周期分岔精细层次结构及其普适常数研究. 物理学报, 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [7] 秦明, 许建平. 开关变换器多级脉冲序列控制研究. 物理学报, 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [8] 杨谈, 金跃辉, 程时端. TCP-RED离散反馈系统中的边界碰撞分岔及混沌控制. 物理学报, 2009, 58(8): 5224-5237. doi: 10.7498/aps.58.5224
    [9] 刘中, 包伯成, 周国华, 许建平. 斜坡补偿电流模式控制开关变换器的动力学建模与分析. 物理学报, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [10] 秦明, 许建平, 高玉, 王金平. 基于电流基准的开关变换器脉冲序列控制方法. 物理学报, 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
    [11] 沙金, 许建平, 刘姝晗, 钟曙. 谷值电流型脉冲序列控制开关变换器及其能量建模研究. 物理学报, 2014, 63(9): 098401. doi: 10.7498/aps.63.098401
    [12] 包伯成, 周国华, 许建平. 峰值/谷值电流型控制开关DC-DC变换器的对称动力学现象分析. 物理学报, 2010, 59(4): 2272-2280. doi: 10.7498/aps.59.2272
    [13] 杨平, 许建平, 何圣仲, 包伯成. 电流控制二次型Boost变换器的动力学研究. 物理学报, 2013, 62(16): 160501. doi: 10.7498/aps.62.160501
    [14] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响. 物理学报, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [15] 刘啸天, 周国华, 李振华, 陈兴. 基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析. 物理学报, 2015, 64(22): 228401. doi: 10.7498/aps.64.228401
    [16] 杨科利. 一类可变禁区的不连续系统的加周期分岔. 物理学报, 2015, 64(12): 120502. doi: 10.7498/aps.64.120502
    [17] 张 波, 丘东元, 杨 汝. 开关变换器离散子系统混沌点过程描述及EMI抑制. 物理学报, 2008, 57(3): 1389-1397. doi: 10.7498/aps.57.1389
    [18] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析. 物理学报, 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [19] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌. 物理学报, 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
    [20] 王发强, 马西奎, 闫晔. 不同开关频率下电压控制升压变换器中的Hopf分岔分析. 物理学报, 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
  • 引用本文:
    Citation:
计量
  • 文章访问数:  580
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-28
  • 修回日期:  2013-07-23
  • 刊出日期:  2013-11-05

电压型双频率控制开关变换器的动力学建模与多周期行为分析

  • 1. 磁浮技术与磁浮列车教育部重点实验室, 西南交通大学电气工程学院, 成都 610031;
  • 2. 合肥工业大学电气与自动化工程学院, 合肥 230009
    基金项目: 

    国家自然科学基金(批准号: 51177140)、四川省青年科技基金(批准号: 2013JQ0033) 和中央高校基本科研业务费专项资金 (批准号: 2682013ZT20, SWJTU11CX032) 资助的课题.

摘要: 在断续导电模式下, 建立了电压型双频率控制开关变换器的动力学模型, 并推导了相应的特征值方程. 根据动力学模型, 采用分岔图研究了电路参数变化时变换器存在的边界碰撞分岔行为和周期2, 周期3,周期4等多周期行为, 结果表明: 变换器经历了周期1态、多周期态、周期1态的分岔路由; 周期态的转变均是由边界碰撞分岔引起的. 根据特征值方程, 采用Lyapunov指数研究了变换器的稳定性, 结果表明: 随着电路参数的变化, Lyapunov指数始终小于零, 变换器一直工作于稳定的周期态, 验证了电压型双频率控制开关变换器的周期3行为并不意味着变换器会必然发生混沌. 通过电路仿真, 分析了负载变化时变换器的时域波形、相轨图和频谱图, 验证了动力学模型的可行性和理论分析的正确性. 实验结果验证了文中的仿真结果.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回