搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相同尺度下气泡与复杂壁面的耦合特性研究

史冬岩 王志凯 张阿漫

相同尺度下气泡与复杂壁面的耦合特性研究

史冬岩, 王志凯, 张阿漫
PDF
导出引用
  • 采用格子Boltzmann方法(LBM)建立了气液固三相耦合的动力学模型,研究了相同尺度下上浮气泡与复杂壁面的相互耦合作用. 首先,基于黏性流体理论,通过构建一组格子Boltzmann(LB)方程来描述气液两相的运动,并以LB离散体积力的形式计入了黏性力、表面张力和重力. 同时,采用LBM中的Half-way反弹模型与有限差分格式相结合的方式进行固壁边界的处理. 然后,利用本文建立的模型,对不同特征尺寸比条件下,气泡与考虑边缘效应的平面固壁和曲面固壁的耦合特性进行了研究. 研究发现固壁边界条件以及特征尺寸比对气泡的运动和拓扑结构的变化都具有明显的非线性影响. 最后,研究了流体属性对气泡与复杂壁面耦合规律的影响.
    • 基金项目: 中组部青年拔尖人才支持计划,新世纪优秀人才支持计划(批准号:NCET100054)和国防基础科研(批准号:B2420133001)资助的课题.
    [1]

    Chen X P, Zhong C W, Yuan X L 2011 Comput. Math. Appl. 61 3577

    [2]

    Ji B, Luo X W, Wu Y L, Xu H Y 2012 Chin. Phys. Lett. 29 076401

    [3]
    [4]
    [5]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2012 Acta Phys. Sin. 61 224702 (in Chinese)[刘云龙, 张阿漫, 王诗平, 田昭丽 2012 物理学报 61 224702]

    [6]
    [7]

    Zhang A M, Yang W S, Huang C, Ming F R 2012 Comput. Fluids 71 169

    [8]
    [9]

    Fujiwara A, Minato D, Hishida K 2004 Int. J. Heat Fluid Fl. 25 481

    [10]

    Clift R, Grace J R, Weber M E 2005 Bubbles, drops, and particles (1st Ed.) (New York: Academic Press) p23

    [11]
    [12]
    [13]

    Bhaga D, Weber M E 1980 J. Fluid Mech. 105 61

    [14]
    [15]

    Duineveld P C 1998 Appl. Sci. Res. 58 409

    [16]

    Zhang A M, Yao X L, Feng L H 2009 Ocean Eng. 36 295

    [17]
    [18]

    Zhang A M, Yao X L 2008 Chinese Phys. B 17 0927

    [19]
    [20]
    [21]

    Unverdi S O, Tryggvason G 1992 J. Comput. Phys. 100 25

    [22]
    [23]

    Takahira H, Horiuchi T, Banerjee S 2004 J. Fluid Eng. 126 578

    [24]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [25]
    [26]
    [27]

    Delnoij E, Kuipers J A M, Swaaij W P M 1998 Third International Conference on Multiphase Flow Lydon, France, June 8-12

    [28]

    Popinet S, Zaleski S 2002 J. Fluid Mech. 464 137

    [29]
    [30]
    [31]

    Yang G Q, Du B, Fan L S 2007 Chem. Eng. Sci. 62 2

    [32]

    Hassan Y A, Ortiz-Villafuerte J, Schmidl W D 2001 Int. J. Multiphas. Flow 21 817

    [33]
    [34]

    Amaya B L, Lee T 2011 Chem. Eng. Sci. 66 935

    [35]
    [36]
    [37]

    Ghosh S, Patil P, Mishra S C, Das A K, Das P K 2012 Eng. Appl. Comp. Fluid 6 383

    [38]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703 (in Chinese)[史冬岩, 王志凯, 张阿漫 2014 物理学报 63 074703]

    [39]
    [40]

    Jacqmin D 1999 J. Comput. Phys. 155 96

    [41]
    [42]
    [43]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [44]

    Lee T, Lin C L 2005 J. Comput. Phys. 206 16

    [45]
    [46]
    [47]

    Huang H B, Zheng H W, Lu X Y, Shu C 2010 Int. J. Numer. Meth. Fl. 63 1193

    [48]
    [49]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927

    [50]
    [51]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308

    [52]

    Lamura A, Succi S 2003 Int. J. Mod. Phys. B 17 145

    [53]
    [54]
    [55]

    Shi D Y, Wang Z K, Zhang A M 2014 Chinese Journal of Theoretical and Applied Mechanics 46 224 (in Chinese)[史冬岩, 王志凯, 张阿漫 2014 力学学报 46 224]

    [56]

    Yoshno M, Mizutani Y 2006 Math. Comput. Simulat. 72 264

    [57]
    [58]
    [59]

    Liu Y L, Wang Y, Zhang A M 2013 Acta Phys. Sin. 62 214703 (in Chinese)[刘云龙, 汪玉, 张阿漫 2013 物理学报 62 214703]

    [60]

    Cheng M, Lou J, Lim T T 2013 Phys. Fluids 25 067104

    [61]
  • [1]

    Chen X P, Zhong C W, Yuan X L 2011 Comput. Math. Appl. 61 3577

    [2]

    Ji B, Luo X W, Wu Y L, Xu H Y 2012 Chin. Phys. Lett. 29 076401

    [3]
    [4]
    [5]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2012 Acta Phys. Sin. 61 224702 (in Chinese)[刘云龙, 张阿漫, 王诗平, 田昭丽 2012 物理学报 61 224702]

    [6]
    [7]

    Zhang A M, Yang W S, Huang C, Ming F R 2012 Comput. Fluids 71 169

    [8]
    [9]

    Fujiwara A, Minato D, Hishida K 2004 Int. J. Heat Fluid Fl. 25 481

    [10]

    Clift R, Grace J R, Weber M E 2005 Bubbles, drops, and particles (1st Ed.) (New York: Academic Press) p23

    [11]
    [12]
    [13]

    Bhaga D, Weber M E 1980 J. Fluid Mech. 105 61

    [14]
    [15]

    Duineveld P C 1998 Appl. Sci. Res. 58 409

    [16]

    Zhang A M, Yao X L, Feng L H 2009 Ocean Eng. 36 295

    [17]
    [18]

    Zhang A M, Yao X L 2008 Chinese Phys. B 17 0927

    [19]
    [20]
    [21]

    Unverdi S O, Tryggvason G 1992 J. Comput. Phys. 100 25

    [22]
    [23]

    Takahira H, Horiuchi T, Banerjee S 2004 J. Fluid Eng. 126 578

    [24]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [25]
    [26]
    [27]

    Delnoij E, Kuipers J A M, Swaaij W P M 1998 Third International Conference on Multiphase Flow Lydon, France, June 8-12

    [28]

    Popinet S, Zaleski S 2002 J. Fluid Mech. 464 137

    [29]
    [30]
    [31]

    Yang G Q, Du B, Fan L S 2007 Chem. Eng. Sci. 62 2

    [32]

    Hassan Y A, Ortiz-Villafuerte J, Schmidl W D 2001 Int. J. Multiphas. Flow 21 817

    [33]
    [34]

    Amaya B L, Lee T 2011 Chem. Eng. Sci. 66 935

    [35]
    [36]
    [37]

    Ghosh S, Patil P, Mishra S C, Das A K, Das P K 2012 Eng. Appl. Comp. Fluid 6 383

    [38]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703 (in Chinese)[史冬岩, 王志凯, 张阿漫 2014 物理学报 63 074703]

    [39]
    [40]

    Jacqmin D 1999 J. Comput. Phys. 155 96

    [41]
    [42]
    [43]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [44]

    Lee T, Lin C L 2005 J. Comput. Phys. 206 16

    [45]
    [46]
    [47]

    Huang H B, Zheng H W, Lu X Y, Shu C 2010 Int. J. Numer. Meth. Fl. 63 1193

    [48]
    [49]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927

    [50]
    [51]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308

    [52]

    Lamura A, Succi S 2003 Int. J. Mod. Phys. B 17 145

    [53]
    [54]
    [55]

    Shi D Y, Wang Z K, Zhang A M 2014 Chinese Journal of Theoretical and Applied Mechanics 46 224 (in Chinese)[史冬岩, 王志凯, 张阿漫 2014 力学学报 46 224]

    [56]

    Yoshno M, Mizutani Y 2006 Math. Comput. Simulat. 72 264

    [57]
    [58]
    [59]

    Liu Y L, Wang Y, Zhang A M 2013 Acta Phys. Sin. 62 214703 (in Chinese)[刘云龙, 汪玉, 张阿漫 2013 物理学报 62 214703]

    [60]

    Cheng M, Lou J, Lim T T 2013 Phys. Fluids 25 067104

    [61]
  • [1] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [2] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [3] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [4] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [5] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [6] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [7] 臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法. 物理学报, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [10] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [12] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [13] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [14] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [15] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [16] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟. 物理学报, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [17] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [18] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [19] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究. 物理学报, 2017, 66(4): 044702. doi: 10.7498/aps.66.044702
    [20] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1041
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 修回日期:  2014-04-09
  • 刊出日期:  2014-09-05

相同尺度下气泡与复杂壁面的耦合特性研究

  • 1. 机电工程学院哈尔滨工程大学, 哈尔滨 150001;
  • 2. 船舶工程学院哈尔滨工程大学, 哈尔滨 150001
    基金项目: 

    中组部青年拔尖人才支持计划,新世纪优秀人才支持计划(批准号:NCET100054)和国防基础科研(批准号:B2420133001)资助的课题.

摘要: 采用格子Boltzmann方法(LBM)建立了气液固三相耦合的动力学模型,研究了相同尺度下上浮气泡与复杂壁面的相互耦合作用. 首先,基于黏性流体理论,通过构建一组格子Boltzmann(LB)方程来描述气液两相的运动,并以LB离散体积力的形式计入了黏性力、表面张力和重力. 同时,采用LBM中的Half-way反弹模型与有限差分格式相结合的方式进行固壁边界的处理. 然后,利用本文建立的模型,对不同特征尺寸比条件下,气泡与考虑边缘效应的平面固壁和曲面固壁的耦合特性进行了研究. 研究发现固壁边界条件以及特征尺寸比对气泡的运动和拓扑结构的变化都具有明显的非线性影响. 最后,研究了流体属性对气泡与复杂壁面耦合规律的影响.

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回