搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两层耦合可激发介质中螺旋波转变为平面波

李伟恒 黎维新 潘飞 唐国宁

两层耦合可激发介质中螺旋波转变为平面波

李伟恒, 黎维新, 潘飞, 唐国宁
PDF
导出引用
导出核心图
  • 采用Bär-Eiswirth模型研究了两层耦合可激发介质中螺旋波的动力学,两层介质通过网络连接,即在每一层介质上,每一列选一个可激发单元作为中心点,在一层介质上同一列的可激发单元只与另一层介质上对应的中心点及其8个邻居有耦合. 数值模拟结果表明:通过这种局部耦合,在适当小的耦合强度下两耦合螺旋波可实现同步,增大耦合强度会导致螺旋波漫游和漂移,造成螺旋波不同步,观察到螺旋波与静息态、低频平面波和不规则斑图共存现象. 在适当强的耦合强度下,还观察到两螺旋波转变成同步的平面波消失现象. 对产生这些现象的物理机理做了讨论.
    • 基金项目: 国家自然科学基金(批准号:11165004,11365003)资助的课题.
    [1]

    Mller S C, Plesser T, Hess B 1985 Science New Series 230 661

    [2]

    Belmonte A L, Ouyang Q, Flesselles J M 1997 J. Phys. II France 7 1425

    [3]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [4]

    Pertsov A M, Davidenko J M, Salomonsz R, Baxter W T, Jalife J 1993 Circ. Res. 72 631

    [5]

    Lechleiter J, Girard S, Peralta E, Clapham D 1991 Science New Series 252 123

    [6]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [7]

    Qian Y 2012 Chin. Phys. B 21 088201

    [8]

    Seipel M, Schneider F W, Mnster A F 2001 Faraday Discuss. 120 395

    [9]

    Steinbock O, Zykov V, Mller S C 1993 Nature 366 322

    [10]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 57 2832 (in Chinese) [马军, 靳伍银, 易鸣, 李延龙 2008 物理学报 57 2832]

    [11]

    Qiu K, Tang J, Luo J M, Ma J 2013 Chin. Phys. Lett. 30 118701

    [12]

    Zhou C S, Zemanová L, Zamora-Lopez G, Hilgetag C C, Kurths J 2007 New J. Phys. 9 178

    [13]

    Clayton R H, Bernus O, Cherry E M, Dierckx H, Fenton F H, Mirabella L, Panfilov A V, Sachse F B, Seemann G, Zhang H 2011 Prog. Biophys. Molecul. Biol. 104 22

    [14]

    Gaudesius G, Miragoli M, Thomas S P, Rohr S 2003 Circ. Res. 93 421

    [15]

    He D H, Hu G, Zhan M, Ren W, Gao Z 2002 Phys. Rev. E 65 055204

    [16]

    Wang X N, Lu Y, Jiang M X, Ouyang Q 2004 Phys. Rev. E 69 056223

    [17]

    Hooks D A, Trew M L, Caldwell B J, Sands G B, LeGrice I J, Smaill B H 2007 Circ. Res. 101 e103

    [18]

    Nie H C, Xie L L, Gao J H, Zhan M 2011 Chaos 21 023107

    [19]

    Hildebrand M, Cui J X, Mihaliuk E, Wang J C, Showalter K 2003 Phys. Rev. E 68 026205

    [20]

    Li G Z, Chen Y Q, Tang G N 2012 Acta Phys. Sin. 61 020502 (in Chinese) [黎广钊, 陈永淇, 唐国宁 2012 物理学报 61 020502]

    [21]

    Chen X J, Qiao C G, Wang L L, Zhou Z W, Tian T T, Tang G N 2013 Acta Phys. Sin. 62 128201 (in Chinese) [陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁 2013 物理学报 62 128201]

    [22]

    Yang H J, Yang J Z 2007 Phys. Rev. E 76 016206

    [23]

    Zhang H, Wu N J, Ying H P, Hu G, Hu B 2004 J. Chem. Phys. 121 7276

    [24]

    Nie H C, Gao J H, Zhan M 2011 Phys. Rev. E 84 056204

    [25]

    Liu G Q, Ying H P 2014 Chin. Phys. B 23 050502

    [26]

    Bär M, Eiswirth M 1993 Phys. Rev. E 48 R1635

    [27]

    Ishida H, Genka C, Hirota Y, Nakazawa H, Barry W H 1999 Biophys. J. 77 2114

  • [1]

    Mller S C, Plesser T, Hess B 1985 Science New Series 230 661

    [2]

    Belmonte A L, Ouyang Q, Flesselles J M 1997 J. Phys. II France 7 1425

    [3]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [4]

    Pertsov A M, Davidenko J M, Salomonsz R, Baxter W T, Jalife J 1993 Circ. Res. 72 631

    [5]

    Lechleiter J, Girard S, Peralta E, Clapham D 1991 Science New Series 252 123

    [6]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [7]

    Qian Y 2012 Chin. Phys. B 21 088201

    [8]

    Seipel M, Schneider F W, Mnster A F 2001 Faraday Discuss. 120 395

    [9]

    Steinbock O, Zykov V, Mller S C 1993 Nature 366 322

    [10]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 57 2832 (in Chinese) [马军, 靳伍银, 易鸣, 李延龙 2008 物理学报 57 2832]

    [11]

    Qiu K, Tang J, Luo J M, Ma J 2013 Chin. Phys. Lett. 30 118701

    [12]

    Zhou C S, Zemanová L, Zamora-Lopez G, Hilgetag C C, Kurths J 2007 New J. Phys. 9 178

    [13]

    Clayton R H, Bernus O, Cherry E M, Dierckx H, Fenton F H, Mirabella L, Panfilov A V, Sachse F B, Seemann G, Zhang H 2011 Prog. Biophys. Molecul. Biol. 104 22

    [14]

    Gaudesius G, Miragoli M, Thomas S P, Rohr S 2003 Circ. Res. 93 421

    [15]

    He D H, Hu G, Zhan M, Ren W, Gao Z 2002 Phys. Rev. E 65 055204

    [16]

    Wang X N, Lu Y, Jiang M X, Ouyang Q 2004 Phys. Rev. E 69 056223

    [17]

    Hooks D A, Trew M L, Caldwell B J, Sands G B, LeGrice I J, Smaill B H 2007 Circ. Res. 101 e103

    [18]

    Nie H C, Xie L L, Gao J H, Zhan M 2011 Chaos 21 023107

    [19]

    Hildebrand M, Cui J X, Mihaliuk E, Wang J C, Showalter K 2003 Phys. Rev. E 68 026205

    [20]

    Li G Z, Chen Y Q, Tang G N 2012 Acta Phys. Sin. 61 020502 (in Chinese) [黎广钊, 陈永淇, 唐国宁 2012 物理学报 61 020502]

    [21]

    Chen X J, Qiao C G, Wang L L, Zhou Z W, Tian T T, Tang G N 2013 Acta Phys. Sin. 62 128201 (in Chinese) [陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁 2013 物理学报 62 128201]

    [22]

    Yang H J, Yang J Z 2007 Phys. Rev. E 76 016206

    [23]

    Zhang H, Wu N J, Ying H P, Hu G, Hu B 2004 J. Chem. Phys. 121 7276

    [24]

    Nie H C, Gao J H, Zhan M 2011 Phys. Rev. E 84 056204

    [25]

    Liu G Q, Ying H P 2014 Chin. Phys. B 23 050502

    [26]

    Bär M, Eiswirth M 1993 Phys. Rev. E 48 R1635

    [27]

    Ishida H, Genka C, Hirota Y, Nakazawa H, Barry W H 1999 Biophys. J. 77 2114

  • [1] 黎广钊, 陈永淇, 唐国宁. 三层弱循环耦合可激发介质中螺旋波动力学. 物理学报, 2012, 61(2): 020502. doi: 10.7498/aps.61.020502
    [2] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [3] 李伟恒, 潘飞, 黎维新, 唐国宁. 非对称耦合两层可激发介质中的螺旋波动力学. 物理学报, 2015, 64(19): 198201. doi: 10.7498/aps.64.198201
    [4] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [5] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究. 物理学报, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [6] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [7] 王春妮, 马军. 分布式电流刺激抑制心肌组织中螺旋波. 物理学报, 2013, 62(8): 084501. doi: 10.7498/aps.62.084501
    [8] 唐冬妮, 唐国宁. 无扩散功能的缺陷对螺旋波动力学行为的影响. 物理学报, 2010, 59(4): 2319-2325. doi: 10.7498/aps.59.2319
    [9] 田昌海, 邓敏艺. 随机扰动对螺旋波动力学的影响研究. 物理学报, 2013, 62(19): 190503. doi: 10.7498/aps.62.190503
    [10] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制. 物理学报, 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [11] 王光瑞, 陈式刚, 杨世平, 袁国勇. 两个延迟耦合FitzHugh-Nagumo系统的动力学行为. 物理学报, 2005, 54(4): 1510-1512. doi: 10.7498/aps.54.1510
    [12] 张立升, 邓敏艺, 孔令江, 刘慕仁, 唐国宁. 用元胞自动机模型研究二维激发介质中的非线性波. 物理学报, 2009, 58(7): 4493-4499. doi: 10.7498/aps.58.4493
    [13] 陈 勇, 靳伍银, 马 军, 李延龙. 随机相位扰动抑制激发介质中漂移的螺旋波. 物理学报, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [14] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [15] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [16] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究. 物理学报, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [17] 张国勇, 陈 勇, 甘正宁, 马 军. 小世界网络上螺旋波失稳的研究. 物理学报, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [18] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [19] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波. 物理学报, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [20] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
  • 引用本文:
    Citation:
计量
  • 文章访问数:  577
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 修回日期:  2014-05-24
  • 刊出日期:  2014-10-20

两层耦合可激发介质中螺旋波转变为平面波

  • 1. 广西师范大学物理科学与技术学院, 桂林 541004
    基金项目: 

    国家自然科学基金(批准号:11165004,11365003)资助的课题.

摘要: 采用Bär-Eiswirth模型研究了两层耦合可激发介质中螺旋波的动力学,两层介质通过网络连接,即在每一层介质上,每一列选一个可激发单元作为中心点,在一层介质上同一列的可激发单元只与另一层介质上对应的中心点及其8个邻居有耦合. 数值模拟结果表明:通过这种局部耦合,在适当小的耦合强度下两耦合螺旋波可实现同步,增大耦合强度会导致螺旋波漫游和漂移,造成螺旋波不同步,观察到螺旋波与静息态、低频平面波和不规则斑图共存现象. 在适当强的耦合强度下,还观察到两螺旋波转变成同步的平面波消失现象. 对产生这些现象的物理机理做了讨论.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回