搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱

梁源 邢怀中 晁明举 梁二军

CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱

梁源, 邢怀中, 晁明举, 梁二军
PDF
导出引用
  • 用CO2激光烧结合成了负热膨胀材料Sc2(WO4)3和Sc2(MoO4)3. 实验表明, 激光合成负热膨胀材料Sc2(WO4)3和Sc2(MoO4)3属于快速合成技术, 合成一个样品的时间仅需几秒到十几秒, 具有快速凝固的特征; X射线衍射和拉曼光谱分析表明, 所合成的材料为正交相结构, 且具有较高的纯度; 变温拉曼光谱分析表明, 所合成的材料在室温以上没有相变, 但可能有微弱的吸水性; 在对Sc2O3, MoO3, WO3, Sc2(MoO4)3和Sc2(WO4)3拉曼光谱分析的基础上, 给出了激光光子能量及原料和合成产物的声子能级图, 分析了激光烧结合成的机理. 激光光子能量转化为激发声子的能量是光热转化的主要通道, 原料在熔池中反应并快速凝固形成最终产物.
    • 基金项目: 国家自然科学基金 (批准号: 11104252, 11405028)、高等学校博士学科点专项科研基金(批准号: 20114101110003)、郑州市创新团队基金 (批准号: 112PCXTD337) 和中央高校基本科研业务费专项资金资助的课题.
    [1]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90

    [2]

    Liang Y, Zhou H Y, Liang E J, Yuan B, Chao M J 2008 Chin. J. Inorg. Chem. 24 1551 (in Chinese) [梁源, 周鸿颖, 梁二军, 袁斌, 晁明举 2008 无机化学学报 24 1551]

    [3]

    Miller W, Smith C W, Mackenzie D S, Evans K E 2009 J. Mater. Sci. 44 5441

    [4]

    Liang E J 2010 Rec. Pat. Mater. Sci. 3 106

    [5]

    Lind C, Coleman M R, Kozy L C, Sharma G R 2011 Phys. Status Solidi B 248 123

    [6]

    Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y J 2008 J. Phys. Chem. A 112 12582

    [7]

    Liang E J, Wang S H, Wu T A 2007 J. Raman Spectrosc. 38 1186

    [8]

    Guo X Y, Cheng C X, Zhang J, Liang E J 2011 J. Light Scatter. 23 228 (in Chinese) [郭向阳, 程春晓, 张洁, 梁二军 2011 光散射学报 23 228]

    [9]

    Sahoo P P, Sumithra S, Madras G, Guru Row T N 2011 Inorg. Chem. 50 8774

    [10]

    Yuan H L, Yuan B H, Li F, Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese) [袁焕丽, 袁保合, 李芳, 梁二军 2012 物理学报 61 226502]

    [11]

    Guzman-Afonso C, Gonzalez-Silgo C, Gonzalez-Platas J, Torres M E, Lozano-Gorrin A D, Sabalisck N, Sanchez-Fajardo V, Campo J, Rodriguez-Carvajal J 2011 J. Phys. Condens. Matter 23 325402

    [12]

    Marinkovic B A, Jardim P M, De Avillez R R, Rizzo F 2005 Solid State Sci. 7 1377

    [13]

    Wang Z P, Song W B, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 250

    [14]

    Li Z Y, Song W B, Liang E J 2011 J. Phys. Chem. C 115 17806

    [15]

    Xiao X L, Cheng Y Z, Peng J 2008 Solid State Sci. 10 321

    [16]

    Isobe T, Umezome T, Kameshima Y, Nakajima A, Okada K 2009 Mater. Res. Bull. 44 2045

    [17]

    Shang R, Hu Q L, Liu X S, Liang E J, Yuan B, Chao M J 2012 Int. J. Appl. Ceram. Technol. 9 1

    [18]

    Rashmi C, Shrivastava O P 2011 Solid State Sci. 13 444

    [19]

    Xie D Y, Wang Z H, Liu X S, Song W B, Yuan B H, Liang E J 2012 Ceram. Int. 38 3807

    [20]

    Wang X W, Huang Q Z, Deng J X, Yu R B, Chen J, Xing X R 2011 Inorg. Chem. 50 2685

    [21]

    Amos T G, Sleight A W J 2001 Solid State Chem. 160 230

    [22]

    Sanson A, Rocca F, Dalba G, Fornasini P, Grisenti R, Dapiaggi M, Artioli G 2006 Phys. Rev. B 73 214305

    [23]

    Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L, Tucker M G 2008 Science 319 794

    [24]

    Ding P, Liang E J, Jia Y 2008 J. Phys. Condens. Matter 20 275224

    [25]

    Li C W, Tang X, Munoz J A, Keith J B, Tracy S J, Abernathy D L, Fultz B 2011 Phys. Rev. Lett. 107 195504

    [26]

    Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y 2012 Mater. Res. Bull. 47 1113

    [27]

    Chen J, Fan L L, Ren Y, Pan Z, Deng J X, Yu R B, Xing X R 2013 Phys. Rev. Lett. 110 115901

    [28]

    Tong P, Wang B S, Sun Y P 2013 Chin. Phys. B 22 067501

    [29]

    Higgins B, Graeve O A, Edwards D D 2013 J. Am. Ceram. Soc. 96 2402

    [30]

    Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 物理学报 59 3350]

    [31]

    Suzuki T, Omote A 2004 J. Am. Ceram. Soc. 87 1365

    [32]

    Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J, Liang E J 2014 J. Solid State Chem. 218 15

    [33]

    Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H, Wang J Q 2013 Chin. Phys. Lett. 30 126502

    [34]

    Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F, Ferreira F F 2008 Phys. Stat. Sol. B 245 2514

    [35]

    Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H, Liang E J 2013 J. Alloy. Comp. 553 1

    [36]

    Yan X, Li M, Li J, Cheng X 2011 Appl. Mechan. Mater. 66-68 1808

    [37]

    Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Comp. 339 207

    [38]

    Sumithra S, Umarji A M 2006 Solid State Sci. 8 1453

    [39]

    Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148

    [40]

    Evans J S O, Mary T A 2000 Inter. J. Inorg. Mater. 2 143

    [41]

    Liang E J, Huo H L, Wang Z, Chao M J, Wang J P 2009 Solid State Sci. 11 139

    [42]

    Liang E J, Wang J P, Xu E M, Du Z Y, Chao M J 2008 J. Raman Spectrosc. 39 887

    [43]

    Liang E J, Wu T A, Yuan B, Chao M J, Zhang W F 2007 J. Phys. D: Appl. Phys. 40 3219

    [44]

    Zhang J, Yuan C, Wang J Q, Liang E J, Chao M J 2013 Chin. Phys. B 22 087201

    [45]

    Paraguassu W, Maczka M, Souza Filho A G, Freire P T C, Melo F E A, Mendes Filho J, Hanuza J 2007 J. Vibr. Spectrosc. 44 69

    [46]

    Liang E J, Huo H L, Wang J P, Chao M J 2008 J. Phys. Chem. C 112 6577

    [47]

    Li Q J, Yuan B H, Song W B, Liang E J, Yuan B 2012 Chin. Phys. B 21 046501

    [48]

    Song W B, Yuan C, Li Z Y, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 346 (in Chinese) [宋文博, 袁超, 李志远, 赵艳, 蒋毅坚, 梁二军 2011 光散射学报 23 346]

  • [1]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90

    [2]

    Liang Y, Zhou H Y, Liang E J, Yuan B, Chao M J 2008 Chin. J. Inorg. Chem. 24 1551 (in Chinese) [梁源, 周鸿颖, 梁二军, 袁斌, 晁明举 2008 无机化学学报 24 1551]

    [3]

    Miller W, Smith C W, Mackenzie D S, Evans K E 2009 J. Mater. Sci. 44 5441

    [4]

    Liang E J 2010 Rec. Pat. Mater. Sci. 3 106

    [5]

    Lind C, Coleman M R, Kozy L C, Sharma G R 2011 Phys. Status Solidi B 248 123

    [6]

    Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y J 2008 J. Phys. Chem. A 112 12582

    [7]

    Liang E J, Wang S H, Wu T A 2007 J. Raman Spectrosc. 38 1186

    [8]

    Guo X Y, Cheng C X, Zhang J, Liang E J 2011 J. Light Scatter. 23 228 (in Chinese) [郭向阳, 程春晓, 张洁, 梁二军 2011 光散射学报 23 228]

    [9]

    Sahoo P P, Sumithra S, Madras G, Guru Row T N 2011 Inorg. Chem. 50 8774

    [10]

    Yuan H L, Yuan B H, Li F, Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese) [袁焕丽, 袁保合, 李芳, 梁二军 2012 物理学报 61 226502]

    [11]

    Guzman-Afonso C, Gonzalez-Silgo C, Gonzalez-Platas J, Torres M E, Lozano-Gorrin A D, Sabalisck N, Sanchez-Fajardo V, Campo J, Rodriguez-Carvajal J 2011 J. Phys. Condens. Matter 23 325402

    [12]

    Marinkovic B A, Jardim P M, De Avillez R R, Rizzo F 2005 Solid State Sci. 7 1377

    [13]

    Wang Z P, Song W B, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 250

    [14]

    Li Z Y, Song W B, Liang E J 2011 J. Phys. Chem. C 115 17806

    [15]

    Xiao X L, Cheng Y Z, Peng J 2008 Solid State Sci. 10 321

    [16]

    Isobe T, Umezome T, Kameshima Y, Nakajima A, Okada K 2009 Mater. Res. Bull. 44 2045

    [17]

    Shang R, Hu Q L, Liu X S, Liang E J, Yuan B, Chao M J 2012 Int. J. Appl. Ceram. Technol. 9 1

    [18]

    Rashmi C, Shrivastava O P 2011 Solid State Sci. 13 444

    [19]

    Xie D Y, Wang Z H, Liu X S, Song W B, Yuan B H, Liang E J 2012 Ceram. Int. 38 3807

    [20]

    Wang X W, Huang Q Z, Deng J X, Yu R B, Chen J, Xing X R 2011 Inorg. Chem. 50 2685

    [21]

    Amos T G, Sleight A W J 2001 Solid State Chem. 160 230

    [22]

    Sanson A, Rocca F, Dalba G, Fornasini P, Grisenti R, Dapiaggi M, Artioli G 2006 Phys. Rev. B 73 214305

    [23]

    Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L, Tucker M G 2008 Science 319 794

    [24]

    Ding P, Liang E J, Jia Y 2008 J. Phys. Condens. Matter 20 275224

    [25]

    Li C W, Tang X, Munoz J A, Keith J B, Tracy S J, Abernathy D L, Fultz B 2011 Phys. Rev. Lett. 107 195504

    [26]

    Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y 2012 Mater. Res. Bull. 47 1113

    [27]

    Chen J, Fan L L, Ren Y, Pan Z, Deng J X, Yu R B, Xing X R 2013 Phys. Rev. Lett. 110 115901

    [28]

    Tong P, Wang B S, Sun Y P 2013 Chin. Phys. B 22 067501

    [29]

    Higgins B, Graeve O A, Edwards D D 2013 J. Am. Ceram. Soc. 96 2402

    [30]

    Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 物理学报 59 3350]

    [31]

    Suzuki T, Omote A 2004 J. Am. Ceram. Soc. 87 1365

    [32]

    Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J, Liang E J 2014 J. Solid State Chem. 218 15

    [33]

    Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H, Wang J Q 2013 Chin. Phys. Lett. 30 126502

    [34]

    Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F, Ferreira F F 2008 Phys. Stat. Sol. B 245 2514

    [35]

    Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H, Liang E J 2013 J. Alloy. Comp. 553 1

    [36]

    Yan X, Li M, Li J, Cheng X 2011 Appl. Mechan. Mater. 66-68 1808

    [37]

    Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Comp. 339 207

    [38]

    Sumithra S, Umarji A M 2006 Solid State Sci. 8 1453

    [39]

    Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148

    [40]

    Evans J S O, Mary T A 2000 Inter. J. Inorg. Mater. 2 143

    [41]

    Liang E J, Huo H L, Wang Z, Chao M J, Wang J P 2009 Solid State Sci. 11 139

    [42]

    Liang E J, Wang J P, Xu E M, Du Z Y, Chao M J 2008 J. Raman Spectrosc. 39 887

    [43]

    Liang E J, Wu T A, Yuan B, Chao M J, Zhang W F 2007 J. Phys. D: Appl. Phys. 40 3219

    [44]

    Zhang J, Yuan C, Wang J Q, Liang E J, Chao M J 2013 Chin. Phys. B 22 087201

    [45]

    Paraguassu W, Maczka M, Souza Filho A G, Freire P T C, Melo F E A, Mendes Filho J, Hanuza J 2007 J. Vibr. Spectrosc. 44 69

    [46]

    Liang E J, Huo H L, Wang J P, Chao M J 2008 J. Phys. Chem. C 112 6577

    [47]

    Li Q J, Yuan B H, Song W B, Liang E J, Yuan B 2012 Chin. Phys. B 21 046501

    [48]

    Song W B, Yuan C, Li Z Y, Zhao Y, Jiang Y J, Liang E J 2011 J. Light Scatter. 23 346 (in Chinese) [宋文博, 袁超, 李志远, 赵艳, 蒋毅坚, 梁二军 2011 光散射学报 23 346]

  • [1] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [2] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [3] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [4] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [5] 熊 聪, 唐新峰, 祁 琼, 邓书康, 张清杰. Ⅰ型锗基笼合物Ba8Ga16-xSbxGe30的合成及热电性能. 物理学报, 2006, 55(12): 6630-6636. doi: 10.7498/aps.55.6630
    [6] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [7] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能. 物理学报, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [8] 邓书康, 唐新峰, 张清杰. Zn掺杂p型Ba8Ga16ZnxGe30-x笼合物的合成及热电性能. 物理学报, 2007, 56(8): 4983-4988. doi: 10.7498/aps.56.4983
    [9] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [10] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [11] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [12] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [13] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [14] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [15] 丁燕, 沈云, 邓晓华, 钟粤华, 郭俊青, 卢毅, 罗昊宇. 黑磷各向异性拉曼光谱表征及电学特性研究. 物理学报, 2020, (0): . doi: 10.7498/aps.70.20201271
    [16] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [17] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [18] 王昕, 康哲铭, 刘龙, 范贤光. 基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 物理学报, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [19] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [20] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
  • 引用本文:
    Citation:
计量
  • 文章访问数:  922
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-09
  • 修回日期:  2014-08-11
  • 刊出日期:  2014-12-05

CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱

  • 1. 东华大学理学院, 上海 201620;
  • 2. 郑州大学物理工程学院, 材料物理教育部重点实验室, 郑州 450052
    基金项目: 

    国家自然科学基金 (批准号: 11104252, 11405028)、高等学校博士学科点专项科研基金(批准号: 20114101110003)、郑州市创新团队基金 (批准号: 112PCXTD337) 和中央高校基本科研业务费专项资金资助的课题.

摘要: 用CO2激光烧结合成了负热膨胀材料Sc2(WO4)3和Sc2(MoO4)3. 实验表明, 激光合成负热膨胀材料Sc2(WO4)3和Sc2(MoO4)3属于快速合成技术, 合成一个样品的时间仅需几秒到十几秒, 具有快速凝固的特征; X射线衍射和拉曼光谱分析表明, 所合成的材料为正交相结构, 且具有较高的纯度; 变温拉曼光谱分析表明, 所合成的材料在室温以上没有相变, 但可能有微弱的吸水性; 在对Sc2O3, MoO3, WO3, Sc2(MoO4)3和Sc2(WO4)3拉曼光谱分析的基础上, 给出了激光光子能量及原料和合成产物的声子能级图, 分析了激光烧结合成的机理. 激光光子能量转化为激发声子的能量是光热转化的主要通道, 原料在熔池中反应并快速凝固形成最终产物.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回