搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁光效应的二维三角晶格光子晶体模分复用器

周雯 陈鹤鸣

基于磁光效应的二维三角晶格光子晶体模分复用器

周雯, 陈鹤鸣
PDF
导出引用
  • 随着全光通信的快速发展, 波分复用传输系统已不能满足高容量光网络的需求, 而模分复用技术利用有限的稳定模式作为独立信道传递信息, 可以成倍地提高系统容量和频谱效率, 是构建未来光网络的关键技术之一. 本文基于掺Bi复合稀土铁石榴石的磁光效应, 设计了1.55 μm波段的二维三角晶格光子晶体模分复用器. 在该光子晶体结构中引入缺陷, 形成模式分束波导, 通过外加磁场改变其在不同偏振模式下的磁导率, 从而控制TE, TM模式的传输, 实现了1.55 μm波段的模分复用. 利用平面波展开法和时域有限差分法对此模分复用器进行了能带和传输特性分析, 结果表明: TE和TM模式的透射率均高于92%, 信道隔离度分别为19.7 dB和42.1 dB. 这些特性在未来的大容量光传输系统中有着重要的应用前景.
    • 基金项目: 国家自然科学基金(批准号: 61077084)和江苏省普通高校研究生科研创新计划(批准号: CXLX13_451) 资助的课题.
    [1]

    Scott G B, Laklison D E 1976 IEEE Trans. Magn. 12 292

    [2]

    Tamaki T, Kaneda H, Kawanmura N 1991 Appl. Phys. 70 4581

    [3]

    Matsuda K, Minemoto H, Kamada O 1987 IEEE Trans. Magn. 23 3479

    [4]

    Li M, Xu Z C, Huang M, Yan M, Zhang Z L 2006 Infrared Millim. Waves 25 101 (in Chinese) [李淼, 徐志成, 黄敏, 严密, 张志良 2006 红外与毫米波学报 25 101]

    [5]

    Ying J F, Yi S L, Sheng D L 2013 Opt. Lett. 38 4915

    [6]

    Wang D, Cui K Y, Feng X, Huang Y D 2013 Chin. Phys. B 22 094209

    [7]

    Jiang B, Zhang Y J, Zhou W J, Chen W, Liu A J, Zheng W H 2011 Chin. Phys. B 20 024208

    [8]

    Zhao X X, Zhu Q F, Zhang Y 2009 Chin. Phys. B 18 2864

    [9]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 物理学报 60 014202]

    [10]

    Chen H M, Su J, Wang J L, Zhao X Y 2011 Opt. Express 19 3599

    [11]

    Zhang X Y, Hosseini A, Charkravarty S 2013 Opt. Lett. 38 4931

    [12]

    Han J W, Zhang J, Zhao Y L, Gu W Y 2013 Optik 124 1287

    [13]

    Guillaμme L C, Yves Q, Antoine L R 2013 Opt. Express 21 31646

    [14]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [15]

    Sun L L, Shen Y F, Wang J, Zhou J 2010 Acta Photon. Sin. 39 1796 (in Chinese) [孙露露, 沈义峰, 王娟, 周杰 2010 光子学报 39 1796]

    [16]

    Fan F, Guo Z, Bai J J, Wang X H, Chang S J 2011 Acta Phys. Sin. 60 084219 (in Chinese) [范飞, 郭展, 白晋军, 王湘晖, 常胜江 2011 物理学报 60 084219]

    [17]

    Zhou F, Fei H M, Yang Y B, Wu J J 2014 Infrared Millim. Waves 33 155 (in Chinese) [周飞, 费宏明, 杨毅彪, 武建加 2014 红外与毫米波学报 33 155]

    [18]

    Chul S K, Jae E K, Hae Y P 2000 Phys. Rev. B 61 15523

    [19]

    Pozar D M 2011 Microwave Engineering (4th Ed.) (Wiley: John Wiley & Sons, Inc.) p477

    [20]

    Wang W, Lan Z W, Ji H, Wang H C 2002 Electron. Compon. Mater. 21 23 (in Chinese) [王巍, 兰中文, 姬洪, 王豪才 2002 电子元件与材料 21 23]

  • [1]

    Scott G B, Laklison D E 1976 IEEE Trans. Magn. 12 292

    [2]

    Tamaki T, Kaneda H, Kawanmura N 1991 Appl. Phys. 70 4581

    [3]

    Matsuda K, Minemoto H, Kamada O 1987 IEEE Trans. Magn. 23 3479

    [4]

    Li M, Xu Z C, Huang M, Yan M, Zhang Z L 2006 Infrared Millim. Waves 25 101 (in Chinese) [李淼, 徐志成, 黄敏, 严密, 张志良 2006 红外与毫米波学报 25 101]

    [5]

    Ying J F, Yi S L, Sheng D L 2013 Opt. Lett. 38 4915

    [6]

    Wang D, Cui K Y, Feng X, Huang Y D 2013 Chin. Phys. B 22 094209

    [7]

    Jiang B, Zhang Y J, Zhou W J, Chen W, Liu A J, Zheng W H 2011 Chin. Phys. B 20 024208

    [8]

    Zhao X X, Zhu Q F, Zhang Y 2009 Chin. Phys. B 18 2864

    [9]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 物理学报 60 014202]

    [10]

    Chen H M, Su J, Wang J L, Zhao X Y 2011 Opt. Express 19 3599

    [11]

    Zhang X Y, Hosseini A, Charkravarty S 2013 Opt. Lett. 38 4931

    [12]

    Han J W, Zhang J, Zhao Y L, Gu W Y 2013 Optik 124 1287

    [13]

    Guillaμme L C, Yves Q, Antoine L R 2013 Opt. Express 21 31646

    [14]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [15]

    Sun L L, Shen Y F, Wang J, Zhou J 2010 Acta Photon. Sin. 39 1796 (in Chinese) [孙露露, 沈义峰, 王娟, 周杰 2010 光子学报 39 1796]

    [16]

    Fan F, Guo Z, Bai J J, Wang X H, Chang S J 2011 Acta Phys. Sin. 60 084219 (in Chinese) [范飞, 郭展, 白晋军, 王湘晖, 常胜江 2011 物理学报 60 084219]

    [17]

    Zhou F, Fei H M, Yang Y B, Wu J J 2014 Infrared Millim. Waves 33 155 (in Chinese) [周飞, 费宏明, 杨毅彪, 武建加 2014 红外与毫米波学报 33 155]

    [18]

    Chul S K, Jae E K, Hae Y P 2000 Phys. Rev. B 61 15523

    [19]

    Pozar D M 2011 Microwave Engineering (4th Ed.) (Wiley: John Wiley & Sons, Inc.) p477

    [20]

    Wang W, Lan Z W, Ji H, Wang H C 2002 Electron. Compon. Mater. 21 23 (in Chinese) [王巍, 兰中文, 姬洪, 王豪才 2002 电子元件与材料 21 23]

  • [1] 张国营, 夏 天, 程 勇, 薛刘萍, 张学龙. 交换作用对CeF3晶体磁性和磁光效应的影响. 物理学报, 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [2] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [3] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 多缺陷结构的一维磁光多层膜隔离器. 物理学报, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [4] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [5] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [6] 张 浩, 赵建林, 张晓娟, 底 楠. 二维磁性光子晶体及其模场分析. 物理学报, 2007, 56(6): 3546-3552. doi: 10.7498/aps.56.3546
    [7] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调 . 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [8] 李长胜. 电光与磁光效应的互补特性及其传感应用. 物理学报, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [9] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析. 物理学报, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [10] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [11] 陈宪锋, 蒋美萍, 沈小明, 金 铱, 黄正逸. 一维多缺陷光子晶体的缺陷模. 物理学报, 2008, 57(9): 5709-5712. doi: 10.7498/aps.57.5709
    [12] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性. 物理学报, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [13] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [14] 张国营, 程 勇, 张学龙, 夏 天, 薛刘萍. 掺Pb,Ga对Ce:YIG晶体磁光性能的影响. 物理学报, 2006, 55(5): 2601-2605. doi: 10.7498/aps.55.2601
    [15] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [16] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [17] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [18] 周金苟, 杜桂强, 张亚文, 刘念华. 双周期厚度调制的一维光子晶体的电磁模. 物理学报, 2005, 54(8): 3703-3706. doi: 10.7498/aps.54.3703
    [19] 沈晓鹏, 韩 奎, 李海鹏, 沈义峰, 王子煜. 光子晶体自准直光束偏振分束器. 物理学报, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [20] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计. 物理学报, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1068
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-15
  • 修回日期:  2014-09-23
  • 刊出日期:  2015-03-05

基于磁光效应的二维三角晶格光子晶体模分复用器

  • 1. 南京邮电大学光电工程学院, 南京 210023;
  • 2. 南京邮电大学贝尔英才学院, 南京 210023
    基金项目: 

    国家自然科学基金(批准号: 61077084)和江苏省普通高校研究生科研创新计划(批准号: CXLX13_451) 资助的课题.

摘要: 随着全光通信的快速发展, 波分复用传输系统已不能满足高容量光网络的需求, 而模分复用技术利用有限的稳定模式作为独立信道传递信息, 可以成倍地提高系统容量和频谱效率, 是构建未来光网络的关键技术之一. 本文基于掺Bi复合稀土铁石榴石的磁光效应, 设计了1.55 μm波段的二维三角晶格光子晶体模分复用器. 在该光子晶体结构中引入缺陷, 形成模式分束波导, 通过外加磁场改变其在不同偏振模式下的磁导率, 从而控制TE, TM模式的传输, 实现了1.55 μm波段的模分复用. 利用平面波展开法和时域有限差分法对此模分复用器进行了能带和传输特性分析, 结果表明: TE和TM模式的透射率均高于92%, 信道隔离度分别为19.7 dB和42.1 dB. 这些特性在未来的大容量光传输系统中有着重要的应用前景.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回