搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强瑞利反馈的单模窄线宽随机激光器

李阳 刘艳 刘志波 简水生

基于增强瑞利反馈的单模窄线宽随机激光器

李阳, 刘艳, 刘志波, 简水生
PDF
导出引用
导出核心图
  • 仿真说明了单模光纤(SMF)中瑞利散射(RS)的机理, 指出纤芯掺杂的不均匀性以及拉丝过程引起的光纤几何尺寸的随机变化是光纤中RS产生的主要原因, 并以此为基础制作了损耗为0.54 dB/km的散射光纤. 在通信波段, 5 km该散射光纤的瑞利背向散射(RBS)强度高于相同长度的SMF-28近5 dB. 在基于RBS单模随机激光器的数值模拟中, 大量的具有随机幅度和相位的纵模在经历不平坦增益的多次放大之后, 只有在增益最大点附近的模式能够克服损耗成为输出模式. 实验中以掺铒光纤作为增益介质, 500 m散射光纤提供随机反馈, 窄带布拉格光纤光栅(FBG)作为波长选择器件, 得到线宽约3.5 kHz、对比度近50 dB的单模激光输出. 与采用相同长度SMF-28的随机激光器相比, 其阈值电流降低了80 mA, 相同抽运条件下的最大输出功率提高了3 dBm. 该单模窄线宽随机激光器的输出波长的调谐特性仅由FBG的中心波长决定.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB328206)、国家自然基金重点项目(批准号: 60837002)、中央高等学校基本科研业务费专项资金(批准号: 2013JBM005)和北京市高等学校青年英才计划(批准号: YETP0530)资助的课题.
    [1]

    Wang K J, Liu J S, L J T 2006 Acta Phys. Sin. 55 3906 (in Chinese) [王可嘉, 刘劲松, 吕健滔 2006 物理学报 55 3906]

    [2]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 物理学报 62 084207]

    [3]

    Christiano J S M, Leonardo S M, Antônio M B, Martinez M A G, Anderson S L G, Cid B A 2007 Phys. Rev. Lett. 99 153903

    [4]

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202 (in Chinese) [王慧琴, 龚旗煌 2013 物理学报 62 214202]

    [5]

    Hu Z J, Miao B, Wang T X, Fu Q, Zhang D G, Ming H, Zhang Q J 2013 Opt. Lett. 38 4644

    [6]

    Hu Z J, Zhang Q, Miao B, Fu Q, Zou G, Chen Y, Luo Y, Zhang D G, Wang P, Ming H, Zhang Q J 2012 Phys. Rev. Lett. 109 253901

    [7]

    Turitsyn S K, Babin S A, EI-Taher A E, Harper P, Churkin D V, Kavlukov S I, Ania-Castañón J D, Karalekas V, Podivilov E V 2010 Nat. Photon. 4 231

    [8]

    Fotiadi A A 2010 Nat. Photon. 4 204

    [9]

    Churkin D V, EI-Taher A E, Vatnik I D, Ania-Castañón J D, Harper P, Podivilov E V, Babin S A, Turitsyn S K 2012 Opt. Express 20 11178

    [10]

    Smirnov S V, Churkin D V 2013 Opt. Express 21 21236

    [11]

    Zhang W L, Rao Y J, Zhu J M, Yang Z X, Wang Z N, Jia H X 2012 Opt. Express 20 14400

    [12]

    Yin G L, Saxena B, Bao X Y 2011 Opt. Express 19 25981

    [13]

    Zhu T, Bao X Y, Chen L 2011 J. Lightwave Technol. 29 1802

    [14]

    Saxena B, Bao X Y, Chen L 2014 Opt. Lett. 39 1038

    [15]

    Pang M, Bao X Y, Chen L, Qin Z G, Lu Y, Lu P 2013 Opt. Express 21 27155

    [16]

    Pang M, Bao X Y, Chen L 2013 Opt. Lett. 38 1866

    [17]

    Pang M, Xie S R, Bao X Y, Zhou D P, Lu Y G, Chen L 2012 Opt. Lett. 37 3129

    [18]

    Puente N P, Chaikina E I, Herath S, Yamilov A 2011 Appl. Opt. 50 802

    [19]

    Gagné M, Kashyap R 2009 Opt. Express 17 19067

    [20]

    Lizárraga N, Puente N P, Chaikina E I, Leskova T A, Méndez E R 2009 Opt. Express 17 395

    [21]

    Gagné M, Kashyap R 2014 Opt. Lett. 39 2755

    [22]

    Zhu T, Chen F Y, Huang S H, Bao X Y 2013 Laser Phys. Lett. 10 055110

    [23]

    Li Y, Lu P, Bao X Y, Ou Z H 2014 Opt. Lett. 39 2294

  • [1]

    Wang K J, Liu J S, L J T 2006 Acta Phys. Sin. 55 3906 (in Chinese) [王可嘉, 刘劲松, 吕健滔 2006 物理学报 55 3906]

    [2]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 物理学报 62 084207]

    [3]

    Christiano J S M, Leonardo S M, Antônio M B, Martinez M A G, Anderson S L G, Cid B A 2007 Phys. Rev. Lett. 99 153903

    [4]

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202 (in Chinese) [王慧琴, 龚旗煌 2013 物理学报 62 214202]

    [5]

    Hu Z J, Miao B, Wang T X, Fu Q, Zhang D G, Ming H, Zhang Q J 2013 Opt. Lett. 38 4644

    [6]

    Hu Z J, Zhang Q, Miao B, Fu Q, Zou G, Chen Y, Luo Y, Zhang D G, Wang P, Ming H, Zhang Q J 2012 Phys. Rev. Lett. 109 253901

    [7]

    Turitsyn S K, Babin S A, EI-Taher A E, Harper P, Churkin D V, Kavlukov S I, Ania-Castañón J D, Karalekas V, Podivilov E V 2010 Nat. Photon. 4 231

    [8]

    Fotiadi A A 2010 Nat. Photon. 4 204

    [9]

    Churkin D V, EI-Taher A E, Vatnik I D, Ania-Castañón J D, Harper P, Podivilov E V, Babin S A, Turitsyn S K 2012 Opt. Express 20 11178

    [10]

    Smirnov S V, Churkin D V 2013 Opt. Express 21 21236

    [11]

    Zhang W L, Rao Y J, Zhu J M, Yang Z X, Wang Z N, Jia H X 2012 Opt. Express 20 14400

    [12]

    Yin G L, Saxena B, Bao X Y 2011 Opt. Express 19 25981

    [13]

    Zhu T, Bao X Y, Chen L 2011 J. Lightwave Technol. 29 1802

    [14]

    Saxena B, Bao X Y, Chen L 2014 Opt. Lett. 39 1038

    [15]

    Pang M, Bao X Y, Chen L, Qin Z G, Lu Y, Lu P 2013 Opt. Express 21 27155

    [16]

    Pang M, Bao X Y, Chen L 2013 Opt. Lett. 38 1866

    [17]

    Pang M, Xie S R, Bao X Y, Zhou D P, Lu Y G, Chen L 2012 Opt. Lett. 37 3129

    [18]

    Puente N P, Chaikina E I, Herath S, Yamilov A 2011 Appl. Opt. 50 802

    [19]

    Gagné M, Kashyap R 2009 Opt. Express 17 19067

    [20]

    Lizárraga N, Puente N P, Chaikina E I, Leskova T A, Méndez E R 2009 Opt. Express 17 395

    [21]

    Gagné M, Kashyap R 2014 Opt. Lett. 39 2755

    [22]

    Zhu T, Chen F Y, Huang S H, Bao X Y 2013 Laser Phys. Lett. 10 055110

    [23]

    Li Y, Lu P, Bao X Y, Ou Z H 2014 Opt. Lett. 39 2294

  • [1] 王可嘉, 张清泉, 吕健滔, 杜泽明, 刘劲松. 二维无序介质中横磁模的谱线宽度随抽运强度的变化特性. 物理学报, 2008, 57(5): 2941-2945. doi: 10.7498/aps.57.2941
    [2] 刘劲松, 欧阳征标, 孟庆生, 罗贤达, 王 宏, 韩艳玲. 随机性对部分随机介质激光器阈值的影响. 物理学报, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [3] 王可嘉, 刘劲松, 吕健滔. 双光子抽运随机激光器中辐射光能量的演化. 物理学报, 2007, 56(7): 3906-3910. doi: 10.7498/aps.56.3906
    [4] 刘劲松, 刘 海, 王 春, 吕健滔, 樊 婷, 王晓东. 二维随机激光器的模式选择及阈值与饱和特性. 物理学报, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [5] 刘劲松, 王 宏. 随机激光器中准态腔的阈值与其局域化程度的关系. 物理学报, 2004, 53(12): 4224-4228. doi: 10.7498/aps.53.4224
    [6] 吕健滔, 王可嘉, 刘劲松, 姚建铨, 朱启华, 张清泉. 飞秒抽运随机激光输出波形的可控性研究. 物理学报, 2011, 60(7): 074203. doi: 10.7498/aps.60.074203
    [7] 刘劲松, 刘 海, 王 春. 二维随机介质中准态模的频谱时间演化特性. 物理学报, 2005, 54(7): 3116-3122. doi: 10.7498/aps.54.3116
    [8] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [9] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [10] 薛力芳, 张强, 李芳, 周燕, 刘育梁. 高频调制大功率窄线宽分布反馈光纤激光器. 物理学报, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [11] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [12] 侯磊, 韩海年, 张龙, 张金伟, 李德华, 魏志义. 243 nm稳频窄线宽半导体激光器. 物理学报, 2015, 64(13): 134205. doi: 10.7498/aps.64.134205
    [13] 焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚. 用于光频传递的通信波段窄线宽激光器研制及应用. 物理学报, 2015, 64(19): 190601. doi: 10.7498/aps.64.190601
    [14] 王慧琴, 龚旗煌. 随机光纤激光器中光纤与随机介质匹配问题的研究. 物理学报, 2013, 62(21): 214202. doi: 10.7498/aps.62.214202
    [15] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [16] 倪家升, 赵燕杰, 王昌, 彭刚定, 刘统玉, 常军, 孙志慧. 分布反馈式光纤激光器线宽特性及其展宽机理研究. 物理学报, 2012, 61(8): 084205. doi: 10.7498/aps.61.084205
    [17] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [18] 毛嵩, 吴正茂, 樊利, 杨海波, 赵茂戎, 夏光琼. 基于次谐波调制光注入半导体激光器获取窄线宽微波信号的实验研究. 物理学报, 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
    [19] 郭长志, 黄永箴. 近单模半导体激光器中模式间相互作用对光谱线宽的影响. 物理学报, 1990, 39(7): 59-65. doi: 10.7498/aps.39.59
    [20] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  780
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-21
  • 修回日期:  2014-10-20
  • 刊出日期:  2015-04-20

基于增强瑞利反馈的单模窄线宽随机激光器

  • 1. 北京交通大学, 全光网络与现代通信网教育部重点实验室, 北京 100044
    基金项目: 

    国家重点基础研究发展计划(批准号: 2010CB328206)、国家自然基金重点项目(批准号: 60837002)、中央高等学校基本科研业务费专项资金(批准号: 2013JBM005)和北京市高等学校青年英才计划(批准号: YETP0530)资助的课题.

摘要: 仿真说明了单模光纤(SMF)中瑞利散射(RS)的机理, 指出纤芯掺杂的不均匀性以及拉丝过程引起的光纤几何尺寸的随机变化是光纤中RS产生的主要原因, 并以此为基础制作了损耗为0.54 dB/km的散射光纤. 在通信波段, 5 km该散射光纤的瑞利背向散射(RBS)强度高于相同长度的SMF-28近5 dB. 在基于RBS单模随机激光器的数值模拟中, 大量的具有随机幅度和相位的纵模在经历不平坦增益的多次放大之后, 只有在增益最大点附近的模式能够克服损耗成为输出模式. 实验中以掺铒光纤作为增益介质, 500 m散射光纤提供随机反馈, 窄带布拉格光纤光栅(FBG)作为波长选择器件, 得到线宽约3.5 kHz、对比度近50 dB的单模激光输出. 与采用相同长度SMF-28的随机激光器相比, 其阈值电流降低了80 mA, 相同抽运条件下的最大输出功率提高了3 dBm. 该单模窄线宽随机激光器的输出波长的调谐特性仅由FBG的中心波长决定.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回