搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnO2量子点/石墨烯复合结构的合成及其光催化性能研究

叶鹏飞 陈海涛 卜良民 张堃 韩玖荣

SnO2量子点/石墨烯复合结构的合成及其光催化性能研究

叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣
PDF
导出引用
导出核心图
  • 本文以SnCl4·5H2O和氧化石墨烯为先驱物, 乙醇水溶液为溶剂, 采用一种简单的水热法一步合成了具有可见光催化活性的SnO2量子点(约3–5 nm)与石墨烯复合结构, 利用透射电子显微镜(TEM), 高分辨透射电子显微镜(HRTEM), X射线衍射仪(XRD), 傅里叶变换红外光谱(FT-IR)等技术对其结构进行了表征, 利用紫外可见吸收光谱(UV-vis)分析了其光学性能, 罗丹明-B染料为目标降解物研究了SnO2量子点/石墨烯复合结构可见光催化性能. 结果表明: 与纯SnO2、纯石墨烯相比, 复合结构显示出了很高的可见光催化活性. 通过对其结构进行分析, 我们提出了SnO2量子点/石墨烯复合结构的形成机制及其可见光催化活性机理.
    • 基金项目: 国家自然科学基金(批准号: 10647144, 11004170)资助的课题.
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584

    [3]

    Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613

    [4]

    Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249

    [5]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411

    [6]

    Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274

    [7]

    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812

    [8]

    Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893

    [9]

    Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690

    [10]

    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820

    [11]

    Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528

    [12]

    Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467

    [13]

    Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148

    [14]

    Jiang Z, Shangguan W F 2015 Catalysis Today 242 372

    [15]

    Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]

    [16]

    Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]

    [19]

    Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]

    [20]

    Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303

    [21]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [22]

    Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711

    [23]

    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705

    [24]

    Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360

    [25]

    Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634

    [26]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [27]

    Geim A K 2009 Science 324 1530

    [28]

    Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666

    [29]

    Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339

    [30]

    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227

    [31]

    Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584

    [3]

    Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613

    [4]

    Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249

    [5]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411

    [6]

    Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274

    [7]

    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812

    [8]

    Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893

    [9]

    Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690

    [10]

    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820

    [11]

    Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528

    [12]

    Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467

    [13]

    Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148

    [14]

    Jiang Z, Shangguan W F 2015 Catalysis Today 242 372

    [15]

    Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]

    [16]

    Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]

    [19]

    Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]

    [20]

    Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303

    [21]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [22]

    Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711

    [23]

    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705

    [24]

    Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360

    [25]

    Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634

    [26]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [27]

    Geim A K 2009 Science 324 1530

    [28]

    Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666

    [29]

    Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339

    [30]

    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227

    [31]

    Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324

  • [1] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [2] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [3] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质. 物理学报, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [4] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管. 物理学报, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [5] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [6] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [7] 韩敏, 林涛, 万能, 陈坤基, 徐骏. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [8] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [9] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [10] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [11] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [12] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [13] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [14] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [15] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [16] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, , (): . doi: 10.7498/aps.69.20191645
    [17] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [19] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [20] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
  • 引用本文:
    Citation:
计量
  • 文章访问数:  458
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-04-05

SnO2量子点/石墨烯复合结构的合成及其光催化性能研究

  • 1. 扬州大学物理科学与技术学院, 扬州 225000
    基金项目: 

    国家自然科学基金(批准号: 10647144, 11004170)资助的课题.

摘要: 本文以SnCl4·5H2O和氧化石墨烯为先驱物, 乙醇水溶液为溶剂, 采用一种简单的水热法一步合成了具有可见光催化活性的SnO2量子点(约3–5 nm)与石墨烯复合结构, 利用透射电子显微镜(TEM), 高分辨透射电子显微镜(HRTEM), X射线衍射仪(XRD), 傅里叶变换红外光谱(FT-IR)等技术对其结构进行了表征, 利用紫外可见吸收光谱(UV-vis)分析了其光学性能, 罗丹明-B染料为目标降解物研究了SnO2量子点/石墨烯复合结构可见光催化性能. 结果表明: 与纯SnO2、纯石墨烯相比, 复合结构显示出了很高的可见光催化活性. 通过对其结构进行分析, 我们提出了SnO2量子点/石墨烯复合结构的形成机制及其可见光催化活性机理.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回