搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惰性气体原子间相互作用势比较研究

孙素蓉 王海兴

惰性气体原子间相互作用势比较研究

孙素蓉, 王海兴
PDF
导出引用
  • 原子间相互作用势是预测惰性气体输运性质的必要输入条件. 文章对描述惰性气体原子间相互作用的Lennard-Jones势、指数排斥势、Hartree-Fock-Dispersion-B (HFD-B)势和唯象势的形式和特点进行了分析. 基于Chapman-Enskog方法, 计算得到了惰性气体在300–5000 K温度区间内基于四种原子相互作用势的黏性和热导率, 并与文献报道的实验和理论计算结果进行了比较. 研究结果表明, 基于Hartree-Fock排斥理论与色散理论发展起来的HFD-B势能够合理反映惰性气体原子相互作用的趋势与特征, 因而可以较好地预测惰性气体的宏观输运性质.
    • 基金项目: 国家自然基金(批准号: 11275021, 11072020)资助的课题.
    [1]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)

    [2]

    Hirschfelder J O, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons, Inc)

    [3]

    Pirani F, Albertı M, Castro A, Teixidor M M, Cappelletti D 2004 Chem. Phys. Lett. 394 37

    [4]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1981 Intermolecular Forces: Their Origin and Determination (Oxford: Clarendon Press)

    [5]

    Amdur I, Harkness A L 1954 J. Chem. Phys. 22 664

    [6]

    Amdur I, Mason E A 1954 J. Chem. Phys. 22 670

    [7]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 2268

    [8]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 415

    [9]

    Amdur I, Mason E A 1956 J. Chem. Phys. 25 624

    [10]

    Jones J E 1924 Proc. Royal Soc. London Series A 106 46

    [11]

    Murphy A B 1995 Plasma Chem. Plasma P 15 279

    [12]

    Aziz R A, Nain V P S, Carley J S, Taylor W L, McConville G T 1979 J. Chem. Phys. 70 4330

    [13]

    Aziz R A, Meath W J, Allnatt A R 1983 Chem. Phys. 78 295

    [14]

    Aziz R A, Slaman M J 1989 Chem. Phys. 130 187

    [15]

    Aziz R A 1976 J. Chem. Phys. 65 490

    [16]

    Aziz R A 1993 J. Chem. Phys. 99 4518

    [17]

    Devoto R S, Li C P 1968 J. Plasma Phys. 2 17

    [18]

    Kannappan D, Bose T K 1980 Phys. Fluids 23 1473

    [19]

    Aubreton J, Elchinger M F, Rat V, Fauchais P 2004 J. Phys. D: Appl. Phys. 37 34

    [20]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203]

    [21]

    Murphy A B 1997 IEEE Trans. Plasma Sci. 25 809

    [22]

    Devoto R S 1969 AIAA J. 7 199

    [23]

    Murphy A B, Tam E 2014 J. Phys. D: Appl. Phys. 47 295202

    [24]

    Bose T K 1988 Prog. Aerosp. Sci. 25 1

    [25]

    Amdur I, Mason E A 1958 Phys. Fluids 1 370

    [26]

    Monchick L 1959 Phys. Fluids 2 695

    [27]

    Liuti G, Pirani F 1985 Chem. Phys. Lett. 122 245

    [28]

    Cambi R, Cappelletti D, Liuti G, Pirani F 1991 J. Chem. Phys. 95 1852

    [29]

    Bruno D, Catalfamo C, Capitelli M, Colonna G, Pascale O De, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F 2010 Phys. Plasmas 17 112315

    [30]

    Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F 2007 Chem. Phys. 338 62

    [31]

    Ahlrichs R, Penco R, Scoles G 1977 Chem. Phys. 19 119

    [32]

    Hepburn J, Scoles G, Penco R A 1975 Chem. Phys. Lett. 36 451

    [33]

    Aziz R A, Chen H H 1977 J. Chem. Phys. 67 5719

    [34]

    Tang K T, Norbeck J M, Certain P R 1976 J. Chem. Phys. 64 3063

    [35]

    Douketis C, Scoles G, Marchetti S, Zen M, Thakkar A J 1982 J. Chem. Phys. 76 3057

    [36]

    Song B, Wang X P, Wu J T, Liu Z G 2011 Acta Phys. Sin. 60 033401 (in Chinese) [宋渤, 王晓坡, 吴江涛, 刘志刚 2011 物理学报 60 033401]

    [37]

    Aziz R A, Janzen A R, Moldover M R 1995 Phys. Rev. Lett. 74 1586

    [38]

    Aziz R A, Slaman M J 1986 Mol. Phys. 58 679

    [39]

    Aziz R A, Slaman M J 1986 Mol. Phys. 57 825

    [40]

    Hirschfelder J O, Taylor M H, Kihara T, Rutherford R 1961 Phys. Fluids 4 663

    [41]

    Miller E J, Sandler S I 1973 Phys. Fluids 16 491

    [42]

    Sandler S I, Mason E A 1969 Phys. Fluids 12 71

    [43]

    Mason E A 1957 J. Chem. Phys. 27 75

    [44]

    Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550

    [45]

    Devoto R S 1973 Phys. Fluids 16 616

    [46]

    Devoto R S 1966 Phys. Fluids 9 1230

    [47]

    Ghorui S, Heberlein J V R, Pfender E 2008 Plasma Chem. Plasma P 28 553

    [48]

    Ghorui S, Heberlein J V R, Pfender E 2007 Plasma Chem. Plasma P 27 267

    [49]

    Murphy A B 2000 Plasma Chem. Plasma P 20 279

    [50]

    Dawe R A, Smith E B 1970 J. Chem. Phys. 52 693

    [51]

    Maitland G C, Smith E B 1972 J. Chem. Eng. Data 17 150

    [52]

    Jody B J, Saxena S C, Nain V P S, Aziz R A 1977 Chem. Phys. 22 53

    [53]

    Bich E, Millat J, Vogel E 1990 J. Phys. Chem. Ref. Data 19 1289

    [54]

    Kestin J, Knierim K, Mason E A, Najafi B, Ro S T, Waldman M 1984 J. Phys. Chem. Ref. Data 13 229

    [55]

    Jain P C, Saxena S C 1974 J. Phys. E: Sci. Instrum. 7 1023

    [56]

    Guevara F A, McInteer B B, Wageman W E 1969 Phys. Fluids 12 2493

    [57]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma P 14 451

    [58]

    Saxena V K, Saxena S C 1968 Chem. Phys. Lett. 2 44

    [59]

    Chen S H P, Saxena S C 1975 Mol. Phys. 29 455

    [60]

    Nain V P S, Aziz R A, Jain P C, Saxena S C 1976 J. Chem. Phys. 65 3242

    [61]

    Saxena V K, Saxena S C 1969 J. Chem. Phys. 51 3361

    [62]

    Goldblatt M, Wageman W E 1971 Phys. Fluids 14 1024

    [63]

    London F 1930 Quantum 10

    [64]

    London F 1937 Trans. Faraday Soc. 33 8b

  • [1]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)

    [2]

    Hirschfelder J O, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons, Inc)

    [3]

    Pirani F, Albertı M, Castro A, Teixidor M M, Cappelletti D 2004 Chem. Phys. Lett. 394 37

    [4]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1981 Intermolecular Forces: Their Origin and Determination (Oxford: Clarendon Press)

    [5]

    Amdur I, Harkness A L 1954 J. Chem. Phys. 22 664

    [6]

    Amdur I, Mason E A 1954 J. Chem. Phys. 22 670

    [7]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 2268

    [8]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 415

    [9]

    Amdur I, Mason E A 1956 J. Chem. Phys. 25 624

    [10]

    Jones J E 1924 Proc. Royal Soc. London Series A 106 46

    [11]

    Murphy A B 1995 Plasma Chem. Plasma P 15 279

    [12]

    Aziz R A, Nain V P S, Carley J S, Taylor W L, McConville G T 1979 J. Chem. Phys. 70 4330

    [13]

    Aziz R A, Meath W J, Allnatt A R 1983 Chem. Phys. 78 295

    [14]

    Aziz R A, Slaman M J 1989 Chem. Phys. 130 187

    [15]

    Aziz R A 1976 J. Chem. Phys. 65 490

    [16]

    Aziz R A 1993 J. Chem. Phys. 99 4518

    [17]

    Devoto R S, Li C P 1968 J. Plasma Phys. 2 17

    [18]

    Kannappan D, Bose T K 1980 Phys. Fluids 23 1473

    [19]

    Aubreton J, Elchinger M F, Rat V, Fauchais P 2004 J. Phys. D: Appl. Phys. 37 34

    [20]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203]

    [21]

    Murphy A B 1997 IEEE Trans. Plasma Sci. 25 809

    [22]

    Devoto R S 1969 AIAA J. 7 199

    [23]

    Murphy A B, Tam E 2014 J. Phys. D: Appl. Phys. 47 295202

    [24]

    Bose T K 1988 Prog. Aerosp. Sci. 25 1

    [25]

    Amdur I, Mason E A 1958 Phys. Fluids 1 370

    [26]

    Monchick L 1959 Phys. Fluids 2 695

    [27]

    Liuti G, Pirani F 1985 Chem. Phys. Lett. 122 245

    [28]

    Cambi R, Cappelletti D, Liuti G, Pirani F 1991 J. Chem. Phys. 95 1852

    [29]

    Bruno D, Catalfamo C, Capitelli M, Colonna G, Pascale O De, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F 2010 Phys. Plasmas 17 112315

    [30]

    Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F 2007 Chem. Phys. 338 62

    [31]

    Ahlrichs R, Penco R, Scoles G 1977 Chem. Phys. 19 119

    [32]

    Hepburn J, Scoles G, Penco R A 1975 Chem. Phys. Lett. 36 451

    [33]

    Aziz R A, Chen H H 1977 J. Chem. Phys. 67 5719

    [34]

    Tang K T, Norbeck J M, Certain P R 1976 J. Chem. Phys. 64 3063

    [35]

    Douketis C, Scoles G, Marchetti S, Zen M, Thakkar A J 1982 J. Chem. Phys. 76 3057

    [36]

    Song B, Wang X P, Wu J T, Liu Z G 2011 Acta Phys. Sin. 60 033401 (in Chinese) [宋渤, 王晓坡, 吴江涛, 刘志刚 2011 物理学报 60 033401]

    [37]

    Aziz R A, Janzen A R, Moldover M R 1995 Phys. Rev. Lett. 74 1586

    [38]

    Aziz R A, Slaman M J 1986 Mol. Phys. 58 679

    [39]

    Aziz R A, Slaman M J 1986 Mol. Phys. 57 825

    [40]

    Hirschfelder J O, Taylor M H, Kihara T, Rutherford R 1961 Phys. Fluids 4 663

    [41]

    Miller E J, Sandler S I 1973 Phys. Fluids 16 491

    [42]

    Sandler S I, Mason E A 1969 Phys. Fluids 12 71

    [43]

    Mason E A 1957 J. Chem. Phys. 27 75

    [44]

    Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550

    [45]

    Devoto R S 1973 Phys. Fluids 16 616

    [46]

    Devoto R S 1966 Phys. Fluids 9 1230

    [47]

    Ghorui S, Heberlein J V R, Pfender E 2008 Plasma Chem. Plasma P 28 553

    [48]

    Ghorui S, Heberlein J V R, Pfender E 2007 Plasma Chem. Plasma P 27 267

    [49]

    Murphy A B 2000 Plasma Chem. Plasma P 20 279

    [50]

    Dawe R A, Smith E B 1970 J. Chem. Phys. 52 693

    [51]

    Maitland G C, Smith E B 1972 J. Chem. Eng. Data 17 150

    [52]

    Jody B J, Saxena S C, Nain V P S, Aziz R A 1977 Chem. Phys. 22 53

    [53]

    Bich E, Millat J, Vogel E 1990 J. Phys. Chem. Ref. Data 19 1289

    [54]

    Kestin J, Knierim K, Mason E A, Najafi B, Ro S T, Waldman M 1984 J. Phys. Chem. Ref. Data 13 229

    [55]

    Jain P C, Saxena S C 1974 J. Phys. E: Sci. Instrum. 7 1023

    [56]

    Guevara F A, McInteer B B, Wageman W E 1969 Phys. Fluids 12 2493

    [57]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma P 14 451

    [58]

    Saxena V K, Saxena S C 1968 Chem. Phys. Lett. 2 44

    [59]

    Chen S H P, Saxena S C 1975 Mol. Phys. 29 455

    [60]

    Nain V P S, Aziz R A, Jain P C, Saxena S C 1976 J. Chem. Phys. 65 3242

    [61]

    Saxena V K, Saxena S C 1969 J. Chem. Phys. 51 3361

    [62]

    Goldblatt M, Wageman W E 1971 Phys. Fluids 14 1024

    [63]

    London F 1930 Quantum 10

    [64]

    London F 1937 Trans. Faraday Soc. 33 8b

  • [1] 郭建军. 惰性气体输运性质的理论计算. 物理学报, 2002, 51(3): 497-500. doi: 10.7498/aps.51.497
    [2] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱. 物理学报, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [3] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [4] 王如志, 李鹏飞, 颜晓红. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [5] J. C. Lasjaunias, 柴一晟, 杨宏顺, 刘 剑, 纪 明, 白彦波, 曹烈兆. 准一维有机超导体(TMTSF)2ClO4的高精度温差电动势研究. 物理学报, 2004, 53(7): 2310-2315. doi: 10.7498/aps.53.2310
    [6] 欧阳方平, 李明君, 肖 金, 徐 慧, 王焕友. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [7] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [8] 林峰, 欧阳方平, 徐慧. 双空位缺陷石墨纳米带的电子结构和输运性质研究. 物理学报, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [9] 王晓坡, 宋渤, 吴江涛, 刘志刚. 基于反转法的O2-CO2 输运性质预测. 物理学报, 2010, 59(10): 7158-7163. doi: 10.7498/aps.59.7158
    [10] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [11] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] 韦建卫, 彭 平, 曾 晖, 胡慧芳, 谢 芳. 含有五边形—七边形缺陷的单壁纳米碳管的输运性质研究. 物理学报, 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
    [13] 吴小山, 徐跟建, 谭伟石, 曹辉, 邓开明. 非化学计量配比La0.67Sr0.33-x□xMnO3的结构和输运性质的研究. 物理学报, 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [14] 汪丽莉, 蒲十周, 胡妮, 张悦, 刘雍, 魏伟, 程莉, 熊锐, 石兢. 磁性和非磁性元素掺杂的自旋梯状化合物Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co)的结构和电输运性质. 物理学报, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [15] 王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算. 物理学报, 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [16] 陈艳秋. 氙等离子体输运性质计算. 物理学报, 2014, 63(20): 205201. doi: 10.7498/aps.63.205201
    [17] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [18] 王晓军, 欧阳方平, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究. 物理学报, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [19] 张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励. 锯齿型石墨烯带缺陷改性方法研究. 物理学报, 2012, 61(13): 137101. doi: 10.7498/aps.61.137101
    [20] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  870
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2015-03-20
  • 刊出日期:  2015-07-05

惰性气体原子间相互作用势比较研究

  • 1. 北京航空航天大学宇航学院, 北京 100191
    基金项目: 

    国家自然基金(批准号: 11275021, 11072020)资助的课题.

摘要: 原子间相互作用势是预测惰性气体输运性质的必要输入条件. 文章对描述惰性气体原子间相互作用的Lennard-Jones势、指数排斥势、Hartree-Fock-Dispersion-B (HFD-B)势和唯象势的形式和特点进行了分析. 基于Chapman-Enskog方法, 计算得到了惰性气体在300–5000 K温度区间内基于四种原子相互作用势的黏性和热导率, 并与文献报道的实验和理论计算结果进行了比较. 研究结果表明, 基于Hartree-Fock排斥理论与色散理论发展起来的HFD-B势能够合理反映惰性气体原子相互作用的趋势与特征, 因而可以较好地预测惰性气体的宏观输运性质.

English Abstract

参考文献 (64)

目录

    /

    返回文章
    返回