搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

势函数对强激光辐照下原子高次谐波辐射的影响

刘艳 贾成 郭福明 杨玉军

引用本文:
Citation:

势函数对强激光辐照下原子高次谐波辐射的影响

刘艳, 贾成, 郭福明, 杨玉军

Influence of atomic potential on the generation of high harmonic generation from the atoms irradiated by mid-infrared laser pulses

Liu Yan, Jia Cheng, Guo Fu-Ming, Yang Yu-Jun
PDF
导出引用
  • 理论上研究了中红外强激光分别与长程库仑原子和短程势模型原子相互作用产生的高次谐波辐射. 发现在相同激光参数条件下, 与长程库仑原子的谐波辐射相比, 短程原子具有更低的辐射效率, 但在高频区域(接近cutoff位置), 二者效率相似. 通过对谐波辐射的时间频率分析发现, 在短程模型原子谐波辐射中, 长轨道发挥更重要的作用. 利用其产生的高次谐波辐射, 可以产生孤立阿秒脉冲.
    By numerically solving the time dependent Schrodinger equation, the harmonic spectra generated from the atoms are obtained. The atomic potentials are modeled by a short-range potential and a long-range soft Coulomb potential, respectively. It is found that using the same laser parameters, the intensity of harmonic spectrum from the short-range atom is lower than the one from the long-range atom. However, in a high energy (near the cutoff) region of harmonic spectra, their conversion efficiencies are almost the same. The differences in emission intensity among harmonic spectra decrease as the harmonic energy increases. We calculate the time dependent probabilities of the ground state and ionization. It is found that the ionization probability of the long-range potential is larger than that of the short-range potential. There is no large difference in ground probability between the potentials of two models. The high harmonic generation is a stimulated process, and its intensity is proportional to the product between the amplitude for ground state and the amplitude of the continuum state. Thus the product of the long-range atom is larger than that of the short-range atom, and the emission spectrum presents a similar character. In order to analyze the mechanism of the intensity difference between two models, we perform a time-frequency analysis of the harmonic emission spectrum. The analysis is selected of the wavelet of the time dependent dipole moment. From the emission profile of the harmonic analysis, we find that the harmonic generated from long orbit plays a dominant role for the short-range atom. The amplitudes of electric field are large for the long orbit harmonic emission, thus the ionization mechanism of the atom is the tunnel ionization. For the short orbit, the instant field for the ionization is weak. Thus the short orbit plays a small role in the harmonic emission from the short-range atom. Using this feature of the short-range atom, we generate an isolated attosecond pulse. The short model atom is widely used to study the ionization of the plasma. Thus this work will contribute to the research on the high-order harmonic generation from the plasma.
      通信作者: 郭福明, guofm@jlu.edu.cn
    • 基金项目: 国家重点基础研究计划(批准号: 2013CB922200)、国家自然科学基金(批准号: 11274141, 11304116, 11534004)和吉林省科学基金(批准号:20140101168JC)资助的课题.
      Corresponding author: Guo Fu-Ming, guofm@jlu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11304116, 11534004), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).
    [1]

    Burnett N H, Baldis H A, Richardson M C, Enright G D 1977 Appl. Phys. Lett. 31 172

    [2]

    Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545

    [3]

    Paul P M, Toma E S, Breger P 2001 Science 292 1689

    [4]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117

    [5]

    Kamta G L, Bandrauk A D 2006 Phys. Rev. A 74 033415

    [6]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008 Science 320 1478

    [7]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203

    [8]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194

    [9]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [10]

    10 Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S 2006 Science 314 443

    [11]

    Corkum P B, Krausz F 2007 Nature Phys. 3 381

    [12]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [13]

    Popmintchev T, Chen M C, Popmintchev D, Kapteyn C 2012 Science 336 1827

    [14]

    Harris G M 1962 Phys. Rev. 125 1131

    [15]

    Faria C F M, Kopold R, Becker W, Rost J M 2002 Phys. Rev. A 65 023404

    [16]

    Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]

    [17]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202

    [18]

    Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 05319

    [19]

    Wei S S, Li s Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418

    [20]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X 2007 Chin. Phys. Lett. 24 1537

    [21]

    Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L, Yang Y J 2014 Chin. Phys. B 23 053201

    [22]

    Su Q, Eberly J H 1991 Phys. Rev. A 44 5997

    [23]

    Puckhov A, Gordienko S, Baeva T 2003 Phys. Rev. Lett. 91 173003

  • [1]

    Burnett N H, Baldis H A, Richardson M C, Enright G D 1977 Appl. Phys. Lett. 31 172

    [2]

    Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545

    [3]

    Paul P M, Toma E S, Breger P 2001 Science 292 1689

    [4]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117

    [5]

    Kamta G L, Bandrauk A D 2006 Phys. Rev. A 74 033415

    [6]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008 Science 320 1478

    [7]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203

    [8]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194

    [9]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [10]

    10 Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S 2006 Science 314 443

    [11]

    Corkum P B, Krausz F 2007 Nature Phys. 3 381

    [12]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [13]

    Popmintchev T, Chen M C, Popmintchev D, Kapteyn C 2012 Science 336 1827

    [14]

    Harris G M 1962 Phys. Rev. 125 1131

    [15]

    Faria C F M, Kopold R, Becker W, Rost J M 2002 Phys. Rev. A 65 023404

    [16]

    Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]

    [17]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202

    [18]

    Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 05319

    [19]

    Wei S S, Li s Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418

    [20]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X 2007 Chin. Phys. Lett. 24 1537

    [21]

    Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L, Yang Y J 2014 Chin. Phys. B 23 053201

    [22]

    Su Q, Eberly J H 1991 Phys. Rev. A 44 5997

    [23]

    Puckhov A, Gordienko S, Baeva T 2003 Phys. Rev. Lett. 91 173003

  • [1] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [2] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [3] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, 2019, 68(18): 184201. doi: 10.7498/aps.68.20190392
    [6] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [7] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [8] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [9] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [10] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [11] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [12] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] 刘硕, 陈高, 陈基根, 朱颀人. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [15] 董晓刚, 盛政明, 陈 民, 张 杰. 强激光与固体靶作用产生的表面电子加速和辐射研究. 物理学报, 2008, 57(12): 7423-7429. doi: 10.7498/aps.57.7423
    [16] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [17] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [18] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [19] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  4683
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-19
  • 修回日期:  2015-11-24
  • 刊出日期:  2016-02-05

/

返回文章
返回