搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于临界电子密度的多载波微放电全局阈值分析

王新波 李永东 崔万照 李韵 张洪太 张小宁 刘纯亮

基于临界电子密度的多载波微放电全局阈值分析

王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮
PDF
导出引用
  • 多载波微放电即发生在宽带、大功率真空无源微波部件中的二次电子倍增放电现象, 是影响空间和加速器应用中无源微波部件长期可靠性的主要隐患. 多载波微放电全局阈值功率的预测对于工作在真空环境中的微波部件至关重要, 但迄今尚无有效方法进行上述阈值的准确分析. 本文将微放电发生过程中二次电子分布区域等效为等离子体, 通过在理论上建立微波部件的电磁特性和电子密度间的对应关系, 提出了一种基于测试系统可检测水平的多载波微放电全局阈值功率分析方法. 为了能够通过蒙特卡罗优化方法得到全局阈值, 进一步基于电子加速的类半正弦等效, 提出了微放电演化过程中电子数涨落的快速计算方法. 基于以上两种方法得到的针对实际微波部件的全局阈值分析结果与实验结果相符合. 不同于传统基于多载波信号功率分析的经验方法, 本文基于临界电子密度判断依据和电子数涨落快速计算, 为多载波微放电全局阈值的准确预测提供了一种高效的分析方法.
      通信作者: 李永东, leyond@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175144) 和空间微波技术重点实验室基金(批准号: 9140c530101130c53013, 9140c530101140c 53231) 资助的课题.
    [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [4]

    Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)

    [5]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [6]

    Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [7]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [8]

    Lara J D, Perez F, Alfonseca M, Galan L, Montero L, Roman E, Raboso D 2006 IEEE Trans. Plasma Sci. 34 476

    [9]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [10]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]

    [11]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 物理学报 63 167901]

    [12]

    ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)

    [13]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112

    [14]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [15]

    Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Techn. 60 2093

    [16]

    Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 物理学报 63 220205]

    [17]

    Wolk D, Schmitt D, Schlipf T 2000 Proceedings of the Third International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware Noordwijk, Netherlands, September 4-6, 2000 p85

    [18]

    Anza S, Mattes M, Armendariz J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D 2010 Proceedings of the 9th International Symposium on Ultra-Wideband, Short Pulse Electromagnetics, Sabath F, Giri D, Rachidi F, Kaelin A (Ed.) 2010 (New York: Springer) p375

    [19]

    Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)

    [20]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion (1st Ed.) (New York: Wiley) pp37-90

    [21]

    Lisovskii V A 1998 Russian Phys. J. 41 394

    [22]

    Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Bouchaud J, Georges A 1990 Phys. Reports 195 127

    [25]

    Edwards A M, Phillips R A, Watkins N W, et al. 2007 Nature 449 1044

    [26]

    Humphries N, Queiroz N, Dyer J R M, et al. 2010 Nature 465 1066

    [27]

    Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253

    [28]

    Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)

    [29]

    Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381

    [30]

    Riyopoulos S 1997 Phys. Plasmas 4 1448

    [31]

    Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problems (1st Ed.) (New York: Pergamon Press)

    [32]

    Goldberg D E 1989 Genetic Algorithms in Search, Optimization Machine Learning (Boston: Addison-Wesley)

  • [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [4]

    Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)

    [5]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [6]

    Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [7]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [8]

    Lara J D, Perez F, Alfonseca M, Galan L, Montero L, Roman E, Raboso D 2006 IEEE Trans. Plasma Sci. 34 476

    [9]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [10]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]

    [11]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 物理学报 63 167901]

    [12]

    ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)

    [13]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112

    [14]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [15]

    Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Techn. 60 2093

    [16]

    Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 物理学报 63 220205]

    [17]

    Wolk D, Schmitt D, Schlipf T 2000 Proceedings of the Third International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware Noordwijk, Netherlands, September 4-6, 2000 p85

    [18]

    Anza S, Mattes M, Armendariz J, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D 2010 Proceedings of the 9th International Symposium on Ultra-Wideband, Short Pulse Electromagnetics, Sabath F, Giri D, Rachidi F, Kaelin A (Ed.) 2010 (New York: Springer) p375

    [19]

    Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)

    [20]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion (1st Ed.) (New York: Wiley) pp37-90

    [21]

    Lisovskii V A 1998 Russian Phys. J. 41 394

    [22]

    Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Bouchaud J, Georges A 1990 Phys. Reports 195 127

    [25]

    Edwards A M, Phillips R A, Watkins N W, et al. 2007 Nature 449 1044

    [26]

    Humphries N, Queiroz N, Dyer J R M, et al. 2010 Nature 465 1066

    [27]

    Shlesinger M F, Klafter J, Zumofen G 1999 Am. J. Phys. 67 1253

    [28]

    Gnedenko B V, Kolmogorov A N 1968 Limit Distributions for Sums of In-dependent Random Variables (Massachusetts: Addison-Wesley, Reading)

    [29]

    Mussawisade K, Santos J E, Schutz G M 1998 J. Phys. A: Math. Gen. 31 4381

    [30]

    Riyopoulos S 1997 Phys. Plasmas 4 1448

    [31]

    Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problems (1st Ed.) (New York: Pergamon Press)

    [32]

    Goldberg D E 1989 Genetic Algorithms in Search, Optimization Machine Learning (Boston: Addison-Wesley)

  • [1] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [2] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [3] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [4] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [5] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [6] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [7] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [8] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [9] 闫孝鲁, 张晓萍, 李阳梅. X波段新型低阻抗高功率微波源的模拟研究. 物理学报, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402
    [10] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [11] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [12] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [13] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [14] 石磊, 钱沐杨, 肖坤祥, 黎明. 低气压条件下氢气潘宁放电的模拟分析. 物理学报, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [15] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [16] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [17] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [18] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [19] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [20] 巩华荣, 宫玉彬, 唐昌建, 王文祥, 魏彦玉, 黄民智. 微波管中离子张弛振荡的混沌现象. 物理学报, 2005, 54(1): 159-163. doi: 10.7498/aps.54.159
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1026
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-22
  • 修回日期:  2015-11-28
  • 刊出日期:  2016-02-05

基于临界电子密度的多载波微放电全局阈值分析

  • 1. 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049;
  • 2. 西安空间无线电技术研究所空间微波技术重点实验室, 西安 710100
  • 通信作者: 李永东, leyond@mail.xjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11175144) 和空间微波技术重点实验室基金(批准号: 9140c530101130c53013, 9140c530101140c 53231) 资助的课题.

摘要: 多载波微放电即发生在宽带、大功率真空无源微波部件中的二次电子倍增放电现象, 是影响空间和加速器应用中无源微波部件长期可靠性的主要隐患. 多载波微放电全局阈值功率的预测对于工作在真空环境中的微波部件至关重要, 但迄今尚无有效方法进行上述阈值的准确分析. 本文将微放电发生过程中二次电子分布区域等效为等离子体, 通过在理论上建立微波部件的电磁特性和电子密度间的对应关系, 提出了一种基于测试系统可检测水平的多载波微放电全局阈值功率分析方法. 为了能够通过蒙特卡罗优化方法得到全局阈值, 进一步基于电子加速的类半正弦等效, 提出了微放电演化过程中电子数涨落的快速计算方法. 基于以上两种方法得到的针对实际微波部件的全局阈值分析结果与实验结果相符合. 不同于传统基于多载波信号功率分析的经验方法, 本文基于临界电子密度判断依据和电子数涨落快速计算, 为多载波微放电全局阈值的准确预测提供了一种高效的分析方法.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回