搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有机半导体激光材料的高灵敏度溶液检测传感器件

池浪 费洪涛 王腾 易建鹏 方月婷 夏瑞东

引用本文:
Citation:

基于有机半导体激光材料的高灵敏度溶液检测传感器件

池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东

A highly sensitive chemosensor for solution based on organic semiconductor laser gain media

Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong
PDF
导出引用
  • 采用光抽运有机激光增益材料产生的放大自发辐射(amplified spontaneous emission ASE), 实现了不同浓度液体的实时检测. 以两种聚合物poly(9, 9-dioctylfluorene-co-benzothiadiazole)和poly(3-hexylthiophene)共混的激光增益介质薄膜作为平面光波导, 观察在滴加少量溶液前后以及不同溶液浓度下, 由于光波导的相对折射率变化导致的放大自发辐射阈值及峰位的变化, 实现对溶液检测. 实验结果显示, 在常温常压下对25 wt.% NaCl溶液检测可得与纯水相比, 放大自发辐射光谱红移了4.5 nm, ASE阈值从0.579 J/pulse上升到1.447 J/pulse, 约2.5倍, 溶液检测灵敏度达到97.8 nm/RIU(refractive index unit), 精度达到141.9 nm/RIU, 充分说明上述方法能实现高灵敏度溶液检测.
    Laser has been widely applied in the scientific and engineering areas including communications, medical treatment, industry, and military due to its extremely strict monochromaticity, high coherence and high energy density. Organic laser based on solution processable polymer gain media has attracted considerable attention in various applications due to its easy fabrication, compact system and flexibility. At present, the chemosensors based on organic semiconductor laser have been widely developed. It has been reported to achieve solution monitoring by organic DFB (distributed feedback) laser. Although the method has its own advantages, there are still many operability and craftsmanship problems to be resolved. In this paper we introduce a new type of the real-time monitoring for various solution. The monitor is realized by using amplified spontaneous emission (ASE) from optically pumped organic semiconductor gain media. The gain media comprising blends of poly(9, 9-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(3-hexylthiophene) (P3HT) at a ratio of 15:85 wt.% is dissolved into toluene (25 mg/mL). Thin films (90 nm thickness) of P3HT/F8BT are obtained by spin coating (2000 rpm) from solution onto pre-cleaned quartz substrates. The P3HT/F8BT film demonstrates the absorption peak at 471 nm, the PL peak at 622 nm, and the ASE peak at 661 nm with FWHM (full-width-at-half-maximum) linewidth of ~ 10 nm under the stripe laser pumping. The thin films are, then, covered by droplet of solution to form planar waveguide structure with variable effective refractive index. Upon analyte binding, a change in refractive index at the P3HT/F8BT film surface results in a change in the effective refractive index of the planar waveguide and in turn induces shift of the ASE mode wavelength and variation of ASE threshold of the organic gain media. The changes in ASE wavelength and threshold can be monitored for sensing. The red shift of 4.5 nm in the ASE spectrum is from 661 to 665.5 nm and the threshold increases from 0.579 J/pulse to 1.447 J/pulse which can be detected with the concentration of sodium chloride increasing from 0 to 25 wt.% in pure water. Our experimental results show that this method is easy to detect the concentration grads of 1 wt.% sodium chloride solution. The measurement sensitivity of solution reaches 97.8 nm/RIU (refractive index unit), and accuracy reaches 141.9 nm/RIU. Furthermore, we demonstrate that the chemosensor could be used for detecting different kinds of solution in the same concentration. The ASE peak position and threshold display clearly different when the droplet 10 wt.% sodium, chloride solution and hydromel solution onto P3HT/F8BT film. Our study suggests that the organic gain media films have potentiality to be developed as a high sensitivity and high accuracy chemosensor to detect solution due to the high sensitivity of the ASE peak position and threshold to the refractive index of the solution.
      通信作者: 夏瑞东, iamrdxia@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61376023, 61136003)、江苏高校优势学科建设工程资 (PAPD)和南京邮电大学引进人才启动基金(批准号: NY212013, NY213044)资助的课题.
      Corresponding author: Xia Rui-Dong, iamrdxia@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376023, 61136003), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY212013, NY213044).
    [1]

    Kristensen M, Kruger A, Groothoff N, Garcia-Ruperez J, Toccafondo V, Garca-Castell J, Bauls M, Peransi-Llopis S, Maquieira A 2011 OSA Optical Sensors SWB1

    [2]

    Shamah S M, Cunningham B T 2011 Analyst 136 1090

    [3]

    Koubov V, Brynda E, Karasov L, kvor J, Homola J,Dostlek J, Tobika P, Roick J 2001 Sens. Actuators B: Chem. 74 100

    [4]

    Baaske M, Vollmer F 2012 Chem. Phys. Chem. 2 427

    [5]

    Cunningham B, Qiu J, Li P, Lin B 2002 Sens. Actuators B: Chem. 87 365

    [6]

    Zhao M R, Wu Z M, Deng T, Zhou Z L, Xia G Q 2015 Chin. Phys. Sin. 24 054207

    [7]

    Zhang Q, Zeng W J, Xia R D 2015 Acta Phys. Sin. 64 094202 (in Chinese) [张琪, 曾文进, 夏瑞东 2015 物理学报 64 094202]

    [8]

    Volmer F, Arnold S 2008 Nat. Methods 7 591

    [9]

    Armani A M, Kulkarni R P, Fraser S E, Flagan R C, Valaha K J 2007 Science 317 783

    [10]

    Zhang Q, Zhang Y, Xu W D, Li X C, Liu J G, Guo X R, Xia R D, Huang W 2015 Opt. Express 23 465

    [11]

    Niu Q L, Zhang Q, Xu W D, Jiang Y, Xia R D, Bradley D D C, Li D, Wen X S 2015 Org. Electron 18 95

    [12]

    Qian Y, Wei Q, Pozo G D, Mrz M M, Ler L, Casado S, Cabanillas-GonzalezJ, Zhang Q, Xie L, Xia R D, Huang W 2014 Adv. Mater. 26 2937

    [13]

    Haughey A M, Guilhabert B, Kanibolotsky A L, Skabara P J, Burley G A, Dawson M D, Laurand N 2013 Sens. Actuators B: Chem. 185 132

    [14]

    Tan Y, Ge C, Chu A, Lu M, Goldshlag W, Huang J, Pokriyal A, George S, Cunningham B T 2012 IEEE Sensors J. 12 1174

    [15]

    Xia R D, Heliotis G, Stavrinou P N, BradleyD D C 2005 Appl. Phys. Lett. 87 031104

    [16]

    Xia R D, Lai W Y, Levermore P A, Huang W, BradleyD D C 2009 Adv. Funct. Mater. 19 2844

    [17]

    Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S 2002 Appl. Phys. Lett. 21 4057

    [18]

    Shen X, Zou H, Zheng R L, Zheng J J, Wei W 2015 Acta Phys. Sin. 64 024210 (in Chinese) [沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 物理学报 64 024210]

    [19]

    Haughey A M, McConnell G, Guilhabert B, Burley G A, Dawson M D, Laurand N 2016 IEEE J. Sel. Topics Quantum Electron. 22 1300109

    [20]

    Xia R D, Stavrinou P N, Bradley D D C, Kin Y2012 J. Appl. Phys. 111 123107

    [21]

    Xia R D, Heliotis G, Hou Y, Bradley D D C 2003 Org. Electron. 4 165

    [22]

    Tong Z, Wei H, Wang M G, Wang Z, Jian S S 2002 Acta Opti. Sin. 22 1088 (in Chinese) [童治, 魏淮, 王目光, 王智, 简水生 2002 光学学报 22 1088]

  • [1]

    Kristensen M, Kruger A, Groothoff N, Garcia-Ruperez J, Toccafondo V, Garca-Castell J, Bauls M, Peransi-Llopis S, Maquieira A 2011 OSA Optical Sensors SWB1

    [2]

    Shamah S M, Cunningham B T 2011 Analyst 136 1090

    [3]

    Koubov V, Brynda E, Karasov L, kvor J, Homola J,Dostlek J, Tobika P, Roick J 2001 Sens. Actuators B: Chem. 74 100

    [4]

    Baaske M, Vollmer F 2012 Chem. Phys. Chem. 2 427

    [5]

    Cunningham B, Qiu J, Li P, Lin B 2002 Sens. Actuators B: Chem. 87 365

    [6]

    Zhao M R, Wu Z M, Deng T, Zhou Z L, Xia G Q 2015 Chin. Phys. Sin. 24 054207

    [7]

    Zhang Q, Zeng W J, Xia R D 2015 Acta Phys. Sin. 64 094202 (in Chinese) [张琪, 曾文进, 夏瑞东 2015 物理学报 64 094202]

    [8]

    Volmer F, Arnold S 2008 Nat. Methods 7 591

    [9]

    Armani A M, Kulkarni R P, Fraser S E, Flagan R C, Valaha K J 2007 Science 317 783

    [10]

    Zhang Q, Zhang Y, Xu W D, Li X C, Liu J G, Guo X R, Xia R D, Huang W 2015 Opt. Express 23 465

    [11]

    Niu Q L, Zhang Q, Xu W D, Jiang Y, Xia R D, Bradley D D C, Li D, Wen X S 2015 Org. Electron 18 95

    [12]

    Qian Y, Wei Q, Pozo G D, Mrz M M, Ler L, Casado S, Cabanillas-GonzalezJ, Zhang Q, Xie L, Xia R D, Huang W 2014 Adv. Mater. 26 2937

    [13]

    Haughey A M, Guilhabert B, Kanibolotsky A L, Skabara P J, Burley G A, Dawson M D, Laurand N 2013 Sens. Actuators B: Chem. 185 132

    [14]

    Tan Y, Ge C, Chu A, Lu M, Goldshlag W, Huang J, Pokriyal A, George S, Cunningham B T 2012 IEEE Sensors J. 12 1174

    [15]

    Xia R D, Heliotis G, Stavrinou P N, BradleyD D C 2005 Appl. Phys. Lett. 87 031104

    [16]

    Xia R D, Lai W Y, Levermore P A, Huang W, BradleyD D C 2009 Adv. Funct. Mater. 19 2844

    [17]

    Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S 2002 Appl. Phys. Lett. 21 4057

    [18]

    Shen X, Zou H, Zheng R L, Zheng J J, Wei W 2015 Acta Phys. Sin. 64 024210 (in Chinese) [沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 物理学报 64 024210]

    [19]

    Haughey A M, McConnell G, Guilhabert B, Burley G A, Dawson M D, Laurand N 2016 IEEE J. Sel. Topics Quantum Electron. 22 1300109

    [20]

    Xia R D, Stavrinou P N, Bradley D D C, Kin Y2012 J. Appl. Phys. 111 123107

    [21]

    Xia R D, Heliotis G, Hou Y, Bradley D D C 2003 Org. Electron. 4 165

    [22]

    Tong Z, Wei H, Wang M G, Wang Z, Jian S S 2002 Acta Opti. Sin. 22 1088 (in Chinese) [童治, 魏淮, 王目光, 王智, 简水生 2002 光学学报 22 1088]

  • [1] 张志远, 肖子晗, 邾珊, 张琪, 夏瑞东, 彭俊彪. 界面材料PFN-Br的光放大性质及其在电泵浦有机激光中的应用潜力. 物理学报, 2023, 72(21): 214204. doi: 10.7498/aps.72.20230773
    [2] 种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭. 一种同步研究透明材料折射率和动力学特性的实验方法. 物理学报, 2021, 70(17): 176201. doi: 10.7498/aps.70.20210414
    [3] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [4] 王小飞, 杨华军, 张戈, 张庆礼, 窦仁勤, 丁守军, 罗建乔, 刘文鹏, 孙贵花, 孙敦陆. 自准直法测GdTaO4晶体折射率. 物理学报, 2016, 65(8): 087801. doi: 10.7498/aps.65.087801
    [5] 张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 磁驱动准等熵加载下Z切石英晶体的折射率. 物理学报, 2016, 65(4): 046201. doi: 10.7498/aps.65.046201
    [6] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [7] 彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念. 辐射致折射率变化用于MeV级脉冲辐射探测的初步研究. 物理学报, 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [8] 张健, 巴德纯, 赵崇凌, 刘坤, 杜广煜. 线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究. 物理学报, 2015, 64(6): 067801. doi: 10.7498/aps.64.067801
    [9] 朱胜军, 王圣来, 刘琳, 王端良, 李伟东, 黄萍萍, 许心光. 大尺寸磷酸二氢钾晶体的折射率均一性研究. 物理学报, 2014, 63(10): 107701. doi: 10.7498/aps.63.107701
    [10] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [11] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [12] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振. 物理学报, 2012, 61(3): 037802. doi: 10.7498/aps.61.037802
    [13] 李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫. 冲击压缩下Z-切石英的弹性响应特性和折射率. 物理学报, 2010, 59(4): 2691-2696. doi: 10.7498/aps.59.2691
    [14] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 在不同扩散系数下反应扩散平面波的折射. 物理学报, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [15] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析. 物理学报, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [16] 张 敏, 林国强, 董 闯, 闻立时. 脉冲偏压电弧离子镀TiO2薄膜的力学与光学性能. 物理学报, 2007, 56(12): 7300-7308. doi: 10.7498/aps.56.7300
    [17] 王擎雷, 吴惠桢, 斯剑霄, 徐天宁, 夏明龙, 谢正生, 劳燕锋. Pb1-xMnxSe薄膜的光学特性. 物理学报, 2007, 56(8): 4950-4954. doi: 10.7498/aps.56.4950
    [18] 延凤平, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [19] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [20] 万新明, 贺天厚, 林 迪, 徐海清, 罗豪甦. 铁电单晶0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3折射率的研究. 物理学报, 2003, 52(9): 2319-2323. doi: 10.7498/aps.52.2319
计量
  • 文章访问数:  5673
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-11
  • 修回日期:  2015-11-26
  • 刊出日期:  2016-03-05

/

返回文章
返回