搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钾掺杂对三联苯的超导特性探寻

高云 王仁树 邬小林 程佳 邓天郭 闫循旺 黄忠兵

引用本文:
Citation:

钾掺杂对三联苯的超导特性探寻

高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵

Searching superconductivity in potassium-doped p-terphenyl

Gao Yun, Wang Ren-Shu, Wu Xiao-Lin, Cheng Jia, Deng Tian-Guo, Yan Xun-Wang, Huang Zhong-Bing
PDF
导出引用
  • 新型超导材料的设计合成及其超导机理的探索是目前凝聚态物理学领域的重要研究方向. 本文采用高真空热烧结方法制备了钾掺杂对三联苯粉末材料并表征了它们的晶体结构、分子振动、磁学及超导特性. X射线衍射图谱和拉曼光谱表明在烧结样品中除存在钾掺杂对三联苯和KH外, 还含有苯环重组的C60和石墨成分. 拉曼光谱中部分峰位的红移进一步证实钾成功掺入对三联苯分子晶体中并将4 s电子转移到C原子上. 零场冷却磁性测量结果表明: 多数样品在整个温度测量区间表现为居里顺磁性, 但少数样品呈现出抗磁性, 而且在17.86, 10.00 和6.42 K三个温度点出现磁化率突降的反常行为, 其中17.86 K处的突降很可能源于钾掺杂C60引起的超导转变, 而后两者可能与钾掺杂对三联苯导致的超导相关. 研究结果有助于理解金属掺杂芳香烃有机超导体这一新兴超导家族的晶体生长和物理特性, 同时也提供了一种低温制备C60和石墨的新方法.
    Searching new superconducting materials and understanding their superconducting mechanisms are the important research directions in the condensed matter physics study. The recent discovery of aromatic hydrocarbon superconductors, including potassium-doped picene, phenanthrene and dibenzopentacene, has aroused considerable research interest of physicists and materials scientists. In this work, potassium-doped p-terphenyl is grown by sealing potassium and p-terphenyl with a mole ratio of 3 : 1 in high-vacuum glass tube and then annealed at 170 ℃ for 7 days or at 240 and 260 ℃ for 24 h. The crystal structure, molecular vibration, and magnetic property are characterized by using X-ray diffraction, Raman scattering, and superconducting quantum interference device. The combination of X-ray diffraction spectrum and Raman spectrum shows that besides potassium-doped p-terphenyl and KH, there exist C60 and graphite in annealed sample, which are found for the first time in the metal-doped aromatic hydrocarbon. Owing to the presence of potassium with high chemical activity, the C-H bond can be broken, resulting in dehydrogenated p-terphenyl with dangling bonds. Consequently, the recombination of dehydrogenated p-terphenyl will form graphite and C60. In addition, the red-shifts of partial peaks of p-terphenyl in Raman spectrum demonstrate that 4 s electron of doped potassium is transferred to C atom. For the samples annealed at 170 and 240 ℃, Curie paramagnetic behaviors are observed in the whole temperature region. On the other hand, in one of the samples annealed at 260 ℃, there exist three anomalous sharp decreases respectively at 17.86, 10.00 and 6.42 K in the zero-field cooling magnetic measurement. Previous studies indicated that the superconducting transition temperatures of potassium-doped C60 and potassium-doped graphite are about 18 K and 3 K. Therefore, it is reasonable to attribute the anomalous sharp decrease at 17.86 K to being produced by potassium-doped C60, while the anomalous sharp decreases at 10.00 and 6.42 K, which have not been reported yet, may be produced by potassium-doped p-terphenyl. The first principles calculations show that potassium-doped p-terphenyl lies in the metallic state, which can form superconductivity due to the electron-phonon interaction. Our results are useful for understanding the crystal growth and physical properties of metal-doped aromatic hydrocarbon organic superconductors. Furthermore, our findings provide a new routine to synthesizing C60 and graphite at low temperature.
      通信作者: 高云, gaoyun@hubu.edu.cn;huangzb@hubu.edu.cn ; 黄忠兵, gaoyun@hubu.edu.cn;huangzb@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574076, 91221103)资助的课题.
      Corresponding author: Gao Yun, gaoyun@hubu.edu.cn;huangzb@hubu.edu.cn ; Huang Zhong-Bing, gaoyun@hubu.edu.cn;huangzb@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574076, 91221103).
    [1]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [2]

    Shen S J, Ying T P, Wang G, Jin S F, Zhang H, Lin Z P, Chen X L 2015 Chin. Phys. B 24 0117406

    [3]

    Zheng X J, Huang Z B, Zou L J 2015 Chin. Phys. B 24 017404

    [4]

    Ma L, Yu W Q 2013 Chin. Phys. B 22 087414

    [5]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76

    [6]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nature Commun. 2 507

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523

    [8]

    Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P 2012 J. Phys.- Condens. Matter 24 345701

    [9]

    Artioli G A, Hammerath F, Mozzati M C, Carretta P, Corana F, Mannucci B, Margadonna S, Malavasi L 2015 Chem. Commun. 51 1092

    [10]

    Kambe T, He X, Takahashi Y, Yamanari Y, Teranishi K, Mitamura H, Shibasaki S, Tomita K, Eguchi R, Goto H, Takabayashi Y, Kato T, Fujiwara A, Kariyado T, Aoki H, Kubozono Y 2012 Phys. Rev. B 86 214507

    [11]

    Teranishi K, He X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505(R)

    [12]

    Roth F, Bauer J, Mahns B, Bchner B, Knupferet M 2012 Phys. Rev. B 85 014513

    [13]

    Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389

    [14]

    Huang Z B, Zhang C, Lin H Q 2012 Sci. Rep. 2 922

    [15]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508

    [16]

    Subedi A, Boeri L 2011 Phys. Rev. B 84 020508(R)

    [17]

    Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006

    [18]

    Taylor R, Langley G J, Kroto H W, Walton D R 1993 Nature 366 728

    [19]

    Howard J B, McKinnon J T, Johnson M T 1992 J. Phys. Chem. 96 6657

    [20]

    Howard J B, Lafleur A L, Makarovsky Y 1992 Carbon 30 1183

    [21]

    Baum T, Loeffler S, Loeffler P 1992 Phys. Chem. 96 841

    [22]

    Smalley R E 1992 Accounts. Chem. Res. 25 98

    [23]

    Peres L O, Siesser M, Froyer G 2005 Synthetic Met. 155 450

    [24]

    Fu Y C, Jin Y F 2010 J. Appl. Phys. 108 104909

    [25]

    Zheng R H, Wei W M, Sun Y Y, Shi Q 2012 Vib. Spectrosc. 58 133

    [26]

    Xiong Y M, Sun Z, Chen X H 2001 Acta Phys. Sin. 50 304 (in Chinese) [熊奕敏, 孙哲, 陈仙辉 2001 物理学报 50 304]

    [27]

    Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T M, Ramirez A P, Kortan A R 1991 Nature 350 600

    [28]

    Belash I T, Bronnikov A D, Zharikov O V, Palnichenko A V 1990 Synthetic Met. 36 283

    [29]

    Yan D D, Wang Z J, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1159 (in Chinese) [严大东, 王志坚, 徐铁峰,李文铸 1994 物理学报 43 1159]

  • [1]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [2]

    Shen S J, Ying T P, Wang G, Jin S F, Zhang H, Lin Z P, Chen X L 2015 Chin. Phys. B 24 0117406

    [3]

    Zheng X J, Huang Z B, Zou L J 2015 Chin. Phys. B 24 017404

    [4]

    Ma L, Yu W Q 2013 Chin. Phys. B 22 087414

    [5]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76

    [6]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nature Commun. 2 507

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523

    [8]

    Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P 2012 J. Phys.- Condens. Matter 24 345701

    [9]

    Artioli G A, Hammerath F, Mozzati M C, Carretta P, Corana F, Mannucci B, Margadonna S, Malavasi L 2015 Chem. Commun. 51 1092

    [10]

    Kambe T, He X, Takahashi Y, Yamanari Y, Teranishi K, Mitamura H, Shibasaki S, Tomita K, Eguchi R, Goto H, Takabayashi Y, Kato T, Fujiwara A, Kariyado T, Aoki H, Kubozono Y 2012 Phys. Rev. B 86 214507

    [11]

    Teranishi K, He X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505(R)

    [12]

    Roth F, Bauer J, Mahns B, Bchner B, Knupferet M 2012 Phys. Rev. B 85 014513

    [13]

    Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389

    [14]

    Huang Z B, Zhang C, Lin H Q 2012 Sci. Rep. 2 922

    [15]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508

    [16]

    Subedi A, Boeri L 2011 Phys. Rev. B 84 020508(R)

    [17]

    Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006

    [18]

    Taylor R, Langley G J, Kroto H W, Walton D R 1993 Nature 366 728

    [19]

    Howard J B, McKinnon J T, Johnson M T 1992 J. Phys. Chem. 96 6657

    [20]

    Howard J B, Lafleur A L, Makarovsky Y 1992 Carbon 30 1183

    [21]

    Baum T, Loeffler S, Loeffler P 1992 Phys. Chem. 96 841

    [22]

    Smalley R E 1992 Accounts. Chem. Res. 25 98

    [23]

    Peres L O, Siesser M, Froyer G 2005 Synthetic Met. 155 450

    [24]

    Fu Y C, Jin Y F 2010 J. Appl. Phys. 108 104909

    [25]

    Zheng R H, Wei W M, Sun Y Y, Shi Q 2012 Vib. Spectrosc. 58 133

    [26]

    Xiong Y M, Sun Z, Chen X H 2001 Acta Phys. Sin. 50 304 (in Chinese) [熊奕敏, 孙哲, 陈仙辉 2001 物理学报 50 304]

    [27]

    Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T M, Ramirez A P, Kortan A R 1991 Nature 350 600

    [28]

    Belash I T, Bronnikov A D, Zharikov O V, Palnichenko A V 1990 Synthetic Met. 36 283

    [29]

    Yan D D, Wang Z J, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1159 (in Chinese) [严大东, 王志坚, 徐铁峰,李文铸 1994 物理学报 43 1159]

  • [1] 朱宏钢, 付明安, 任闯, 高云, 黄忠兵. 钾掺杂三(二苯甲酰甲基)铁的超顺磁性. 物理学报, 2022, 71(8): 087501. doi: 10.7498/aps.71.20212128
    [2] 贺玮迪, 张培源, 刘翔, 田雪芬, 付馨葛, 邓爱红. 用正电子湮没技术研究H/He中性束辐照钨钾合金中缺陷的演化. 物理学报, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [3] 张培源, 邓爱红, 田雪芬, 唐军. 利用正电子湮没技术研究钾掺杂钨合金中的缺陷. 物理学报, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [4] 轩书科. 钾钡共掺菲分子结构和电子特性的第一性原理研究. 物理学报, 2017, 66(23): 237401. doi: 10.7498/aps.66.237401
    [5] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [6] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响. 物理学报, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [7] 万力, 曹亮, 张文华, 韩玉岩, 陈铁锌, 刘凌云, 郭盼盼, 冯金勇, 徐法强. FePc与TiO2(110)及C60界面电子结构研究. 物理学报, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [8] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [9] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [10] 陈祥磊, 孔 伟, 翁惠民, 叶邦角. 碳同素异形体中的正电子理论. 物理学报, 2008, 57(5): 3271-3275. doi: 10.7498/aps.57.3271
    [11] 何少龙, 李宏年, 李海洋, 张寒洁, 吕 斌, 何丕模, 鲍世宁, 徐亚伯. Yb掺杂C60薄膜的x射线光电子能谱研究. 物理学报, 2004, 53(3): 915-921. doi: 10.7498/aps.53.915
    [12] 李宏年. Rb掺杂C60单晶的相衍变和电子态. 物理学报, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
    [13] 邱庆春. T1u×hg Jahn-Teller系统:D3d势阱中的频率分解与能级分裂. 物理学报, 2004, 53(7): 2292-2298. doi: 10.7498/aps.53.2292
    [14] 邱庆春. T1uhg杨-泰乐系统:D5d势阱中的各向异性现象. 物理学报, 2003, 52(4): 958-969. doi: 10.7498/aps.52.958
    [15] 曹万强, 成元发, 刘俊刁, 幸国坤. C60分子在有序-无序和玻璃态相变间的取向概率与弛豫行为. 物理学报, 2000, 49(10): 2001-2006. doi: 10.7498/aps.49.2001
    [16] 姚江宏, 许京军, 张光寅, 邹云娟, 陈光华, 杨 茹, 金永范. 离子注入对C60薄膜结构的影响. 物理学报, 1999, 48(7): 1269-1274. doi: 10.7498/aps.48.1269
    [17] 周斌, 王珏, 沈军, 翁志农, 邓忠生, 赵利, 李郁芬. 掺杂C60的SiO2气凝胶的制备及荧光特性研究. 物理学报, 1997, 46(7): 1437-1443. doi: 10.7498/aps.46.1437
    [18] 傅柔励, 叶红娟, 傅荣堂, 饶雪松, 孙鑫. 原子无序起伏对C60的影响. 物理学报, 1997, 46(4): 694-701. doi: 10.7498/aps.46.694
    [19] 陈光华, 姚江宏, 王永谦, 邹云娟. 硫掺杂C60薄膜电学性质研究. 物理学报, 1997, 46(6): 1183-1187. doi: 10.7498/aps.46.1183
    [20] 黄青锋, 傅荣堂, 孙鑫, 傅柔励. 电子关联对C60激子极化子的影响. 物理学报, 1994, 43(11): 1833-1839. doi: 10.7498/aps.43.1833
计量
  • 文章访问数:  6140
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-27
  • 修回日期:  2016-01-13
  • 刊出日期:  2016-04-05

/

返回文章
返回