搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环氧树脂高温分子链松弛与玻璃化转变特性

林生军 黄印 谢东日 闵道敏 王威望 杨柳青 李盛涛

环氧树脂高温分子链松弛与玻璃化转变特性

林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛
PDF
导出引用
导出核心图
  • 环氧树脂是电力设备中广泛应用的一种绝缘材料, 其介电性能受到分子链运动特性的影响. 本文制备了直径为50 mm、厚度为1 mm的环氧树脂试样, 采用差示扫描量热仪和宽频介电谱仪测试了环氧树脂的玻璃化转变温度和介电特性. 实验结果表明, 环氧树脂的玻璃化转变温度为105 ℃, 在玻璃化转变温度以上, 高频段出现了由分子链段运动造成的松弛过程, 低频段出现了由载流子在材料中迁移造成的直流电导过程. 发现环氧树脂不同尺寸分子链段的松弛时间不同, 其松弛时间分布较宽, 计算得到了分子链段在不同温度下的松弛时间分布特性. 分子链松弛峰频率和直流电导随温度的变化关系服从Vogel-Tammann-Fulcher公式. 拟合实验结果得到分子链松弛峰频率和直流电导的Vogel温度和强度系数. 由Vogel温度计算得到了与差示扫描量热测试结果一致的玻璃化转变温度, 约为102 ℃. 结果表明玻璃化转变温度以上环氧树脂的自由体积增大, 分子链段有足够的空间来响应外电场从而产生分子链松弛极化, 载流子有足够的能量在材料中迁移形成电导.
      通信作者: 闵道敏, forrestmin@xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB251003)、中国博士后科学基金(批准号: 2014M552449)、中央高校基本科研业务费(批准号: xjj2014022)和西安交通大学新教师支持计划(批准号: DWSQc130000008)资助的课题.
    [1]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]

    [2]

    Wang X F 2009 Fundamentals of Electrical Engineering (Xi'an: Xi'an Jiaotong University Press) p20 (in Chinese) [王锡凡 2009 电气工程基础 (西安: 西安交通大学出版社) 第20页]

    [3]

    Dang Z M, Wang H Y, Peng B, Lei Q Q 2006 Proc. CSEE 26 100 (in Chinese) [党智敏, 王海燕, 彭勃, 雷清泉 2006 电机工程学报 26 100]

    [4]

    Huang X Y, Jiang P K, Jin T X, Ke Q Q 2007 Prog. Chem. 19 1776 (in Chinese) [黄兴溢, 江平开, 金天雄, 柯清泉 2007 化学进展 19 1776]

    [5]

    De L A, Grando L, Pesce A, Bettini P, Specogna R 2009 Trans. Dielectr. Electr. Insul. 16 77

    [6]

    Tenbohlem S, Schrocher G 2000 IEEE Trans. Dielectr. Electr. Insul. 7 241

    [7]

    Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055

    [8]

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press) p90 (in Chinese) [金维芳 1997 电介质物理学 (北京: 机械工业出版社) 第90页]

    [9]

    Kremer F, Schönhals A 2003 Broadband Dielectric Spectroscopy (Berlin: Springer) p385

    [10]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Elsevier Academic Press) p41

    [11]

    Lowell J 1990 J. Phys. D: Appl. Phys. 23 205

    [12]

    Min D M, Li S T, Ohki Y 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials Sydney, Australia, July 19-22 2015 p368

    [13]

    Xu J, Li J 1999 Acta Phys. Sin. 48 1930 (in Chinese) [徐敬, 李杰 1999 物理学报 48 1930]

    [14]

    Ning C F, He C Q, Zhang M, Hu C P, Wang B, Wang S J 2001 Acta Polym. Sin. 1 299 (in Chinese) [宁超峰, 何春清, 张明, 胡春圃, 王波, 王少阶 2001 高分子学报 1 299]

    [15]

    Wei L, Zhou L L, Lu G H, Zhang W, Zhang W Z, Zhang S, Feng Y H, Zhou H W, Zhang J L, Huang Y N 2012 Acta Phys. Sin. 61 017701 (in Chinese) [卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能 2012 物理学报 61 017701]

    [16]

    Badawia A, Al-Hosiny N 2015 Chin. Phys. B 24 105101

    [17]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535

    [18]

    Min D M, Li S T, Hirai N, Ohki Y 2015 Proceedings of the 46th Symposium on Electrical and Electronic Insulating Materials and Applications in Systems Kyushu, Japan, September 4-6, 2015 p39

    [19]

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Shanghai: Fudan University Press) p224 (in Chinese) [何曼君, 陈维孝, 董西侠 1990 高分子物理 (上海: 复旦大学出版社) 第224]

    [20]

    Alvarez F, Alegría A, Colmenero J 1991 Phys. Rev. B 44 7306

    [21]

    Angell C A 1997 Polymer 38 6261

    [22]

    Dudowicz J, Freed K F, Douglas J F 2005 J. Phys. Chem. B 109 21285

    [23]

    Schönhals A, Kremer F, Hofmann A, Fischer E W, Schlosser E 1993 Phys. Rev. Lett. 70 3459

  • [1]

    Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]

    [2]

    Wang X F 2009 Fundamentals of Electrical Engineering (Xi'an: Xi'an Jiaotong University Press) p20 (in Chinese) [王锡凡 2009 电气工程基础 (西安: 西安交通大学出版社) 第20页]

    [3]

    Dang Z M, Wang H Y, Peng B, Lei Q Q 2006 Proc. CSEE 26 100 (in Chinese) [党智敏, 王海燕, 彭勃, 雷清泉 2006 电机工程学报 26 100]

    [4]

    Huang X Y, Jiang P K, Jin T X, Ke Q Q 2007 Prog. Chem. 19 1776 (in Chinese) [黄兴溢, 江平开, 金天雄, 柯清泉 2007 化学进展 19 1776]

    [5]

    De L A, Grando L, Pesce A, Bettini P, Specogna R 2009 Trans. Dielectr. Electr. Insul. 16 77

    [6]

    Tenbohlem S, Schrocher G 2000 IEEE Trans. Dielectr. Electr. Insul. 7 241

    [7]

    Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055

    [8]

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press) p90 (in Chinese) [金维芳 1997 电介质物理学 (北京: 机械工业出版社) 第90页]

    [9]

    Kremer F, Schönhals A 2003 Broadband Dielectric Spectroscopy (Berlin: Springer) p385

    [10]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Elsevier Academic Press) p41

    [11]

    Lowell J 1990 J. Phys. D: Appl. Phys. 23 205

    [12]

    Min D M, Li S T, Ohki Y 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials Sydney, Australia, July 19-22 2015 p368

    [13]

    Xu J, Li J 1999 Acta Phys. Sin. 48 1930 (in Chinese) [徐敬, 李杰 1999 物理学报 48 1930]

    [14]

    Ning C F, He C Q, Zhang M, Hu C P, Wang B, Wang S J 2001 Acta Polym. Sin. 1 299 (in Chinese) [宁超峰, 何春清, 张明, 胡春圃, 王波, 王少阶 2001 高分子学报 1 299]

    [15]

    Wei L, Zhou L L, Lu G H, Zhang W, Zhang W Z, Zhang S, Feng Y H, Zhou H W, Zhang J L, Huang Y N 2012 Acta Phys. Sin. 61 017701 (in Chinese) [卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能 2012 物理学报 61 017701]

    [16]

    Badawia A, Al-Hosiny N 2015 Chin. Phys. B 24 105101

    [17]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535

    [18]

    Min D M, Li S T, Hirai N, Ohki Y 2015 Proceedings of the 46th Symposium on Electrical and Electronic Insulating Materials and Applications in Systems Kyushu, Japan, September 4-6, 2015 p39

    [19]

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Shanghai: Fudan University Press) p224 (in Chinese) [何曼君, 陈维孝, 董西侠 1990 高分子物理 (上海: 复旦大学出版社) 第224]

    [20]

    Alvarez F, Alegría A, Colmenero J 1991 Phys. Rev. B 44 7306

    [21]

    Angell C A 1997 Polymer 38 6261

    [22]

    Dudowicz J, Freed K F, Douglas J F 2005 J. Phys. Chem. B 109 21285

    [23]

    Schönhals A, Kremer F, Hofmann A, Fischer E W, Schlosser E 1993 Phys. Rev. Lett. 70 3459

  • [1] 卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能. 邻苯二甲酸二甲酯系材料中-弛豫的降温介电谱测量与分析. 物理学报, 2012, 61(1): 017701. doi: 10.7498/aps.61.017701
    [2] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究. 物理学报, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [3] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [4] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [5] 成鹏飞, 李盛涛, 赵雷, 李建英. ZnO压敏陶瓷中缺陷的介电谱研究. 物理学报, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [6] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷介电损耗的温度谱研究. 物理学报, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [7] 应学农, 张 亮, 吴文惠, 沈异凡, 周恒为, 张晋鲁, 黄以能. 邻苯二甲酸二甲酯系材料的液态簧振动力学谱测量. 物理学报, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [8] 蒋建国, 张丽丽, 张晋鲁, 周恒为, 黄以能. 取向玻璃体系中分子之间取向关联的模型化及其模拟与分析. 物理学报, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [9] 许 华, 沈 韩, 陈 敏, 李景德. 钇掺杂钨酸铅晶体中的极化子和导纳谱. 物理学报, 2003, 52(12): 3125-3129. doi: 10.7498/aps.52.3125
    [10] 吴文惠, 郭秀珍, 张丽丽, 周恒为, 张晋鲁, 黄以能. 邻苯二甲酸二酯系玻璃材料中裂纹愈合效应研究. 物理学报, 2010, 59(1): 417-421. doi: 10.7498/aps.59.417
  • 引用本文:
    Citation:
计量
  • 文章访问数:  557
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2016-01-13
  • 刊出日期:  2016-04-05

环氧树脂高温分子链松弛与玻璃化转变特性

  • 1. 平高集团有限公司, 国家电网高压开关设备绝缘材料实验室, 平顶山 467001;
  • 2. 西安交通大学, 电力设备电气绝缘国家重点实验室, 西安 710049
  • 通信作者: 闵道敏, forrestmin@xjtu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号: 2015CB251003)、中国博士后科学基金(批准号: 2014M552449)、中央高校基本科研业务费(批准号: xjj2014022)和西安交通大学新教师支持计划(批准号: DWSQc130000008)资助的课题.

摘要: 环氧树脂是电力设备中广泛应用的一种绝缘材料, 其介电性能受到分子链运动特性的影响. 本文制备了直径为50 mm、厚度为1 mm的环氧树脂试样, 采用差示扫描量热仪和宽频介电谱仪测试了环氧树脂的玻璃化转变温度和介电特性. 实验结果表明, 环氧树脂的玻璃化转变温度为105 ℃, 在玻璃化转变温度以上, 高频段出现了由分子链段运动造成的松弛过程, 低频段出现了由载流子在材料中迁移造成的直流电导过程. 发现环氧树脂不同尺寸分子链段的松弛时间不同, 其松弛时间分布较宽, 计算得到了分子链段在不同温度下的松弛时间分布特性. 分子链松弛峰频率和直流电导随温度的变化关系服从Vogel-Tammann-Fulcher公式. 拟合实验结果得到分子链松弛峰频率和直流电导的Vogel温度和强度系数. 由Vogel温度计算得到了与差示扫描量热测试结果一致的玻璃化转变温度, 约为102 ℃. 结果表明玻璃化转变温度以上环氧树脂的自由体积增大, 分子链段有足够的空间来响应外电场从而产生分子链松弛极化, 载流子有足够的能量在材料中迁移形成电导.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回