搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波段液晶分子极化率的理论研究

陈泽章

引用本文:
Citation:

太赫兹波段液晶分子极化率的理论研究

陈泽章

Theoretical study on the polarizability properties of liquid crystal in the THz range

Chen Ze-Zhang
PDF
导出引用
  • 近年来, 太赫兹(THz)波段电磁辐射的研究引起科学技术界广泛的关注. 液晶(LC)材料具有宽带可调的特性且拥有成熟的工业技术基础, 在基于液晶设计的太赫兹可调器件研究中显示了巨大的应用潜力. 因此, 为了快速发展实用的LC-THz调制器件, 对液晶材料在太赫兹频率范围内的光电特性进行系统的了解是至关重要的. 分子极化率是表征分子中电荷分布的重要物理量. 采用密度泛函理论方法对液晶分子PCH5, 5CB和5OCB在太赫兹波段的极化率性质进行计算研究, 从电子结构的角度, 利用极化率密度分析方法考察了分子不同区域对极化率数值的贡献, 详细探讨了尾链、核心结构和极性取代基等不同基团对极化率及其各向异性的影响.
    Terahertz (THz) technology developed rapidly in recent years. Liquid crystals (LCs) are one of the most promising base materials to construct switchable devices in THz range because of their high optical anisotropies. However, the practical applications of the devices are hampered by the relationships between birefringence, thickness and LCs switching time. Due to the long wavelength, THz device requires a larger birefringence LC than the device operated at optical frequencies. Yet, in order to design an efficient switchable LC-THz device, it is crucial to find or synthetize LC material which will still display a useful birefringence at THz frequencies. The birefringence properties of LC are determined by the molecular polarizability of the relevant material. Knowledge of the LC molecular polarizability and its dependence on the molecular structure is important for designing LC molecules with desired THz properties. The prediction of the photoelectric characteristics could save a considerable quantity of the man-power and materials needed for the design or synthesis of new LC compounds. A priori screening of materials and the prediction of the optoelectronic properties would make a vast opportunity for expanding the LC material application scope. Hence, the main purpose of the present work is to provide a theoretical method of calculating and analyzing the THz polarizability properties of LC single compounds for LC-THz device applications. In this work, the frequency dependent molecule polarizability values of liquid crystal PCH5, 5CB and 5OCB in THz range are calculated by the density functional theory method. The geometries of the studied LCs are optimized at B3 LYP levels with the standard 6-311G(d) basis set. From the optimized geometries the molecule THz polarizabilities of LCs are calculated by the M06-2x functional with 6-311++G(2d, p) basis set, and they are found to be in good agreement with experimental data. By plotting the polarizability density analysis (PDA), the spatial contributions of electrons to the longitudinal polarizability are presented. The influences of alkyl chain and core structure on the microscopic polarizability of the LC molecule are investigated and explained by using the finite field approach and PDA. The results show that the unsaturated group, such as benzene ring or cyanobenzyl, makes great contribution to the polarizability of LC. In the design process, the new type of LC molecule must be extended the length of up electron conjugated system, to reduce the energy gap between HOMO and LUMO, and hence improving LC molecule polarizabilty. We hope that the present work could give a useful guide in screening or designing LC molecules for THz applications, and offer an effective way to understand fundamental optoelectronic characteristic of LC materials in the THz frequency range.
      通信作者: 陈泽章, zezhangchen@126.com
    • 基金项目: 国家自然科学基金(批准号:51502081)资助的课题.
      Corresponding author: Chen Ze-Zhang, zezhangchen@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51502081).
    [1]

    Xu J Z, Zhang X C 2007 Terahertz Science and Technology and Application (Beijing: Bejing University Press) p1 (in Chinese) [许景周, 张希成2007 太赫兹科学技术和应用 (北京: 北京大学出版社) 第1页]

    [2]

    Lee Y Z (translated by Cui W Z) 2012 Principles of Terahertz Science and Technology (Beijing: National Defend Industy Press) pp1-3 (in Chinese) [李允植 著 (崔万照 译) 2012 太赫兹科学与技术原理 (北京: 国防工业出版社)第1-3页]

    [3]

    Chen Z Z, Jiang Y R, Li M, Jiang L L, Ma H 2015 Liq. Cryst. 42 947

    [4]

    Lee M, Wanke M C 2007 Science 316 64

    [5]

    Zhao W, Ju D, Jiang Y 2014 Appl. Phys. Express 7 124301

    [6]

    Nakanishi H, Fujiwara S, Takayama K, Kawayama I, Murakami HTonouchi M 2012 Appl. Phys. Express 5 112301

    [7]

    O'hara J F, Withayachumnankul W, Al-Naib I 2012 J. Infrared Millim. Te. 33 245

    [8]

    Shi S C, Li J, Zhang W, Miao W 2015 Acta Phys. Sin. 64 228501 (in Chinese) [史生才, 李婧, 张文, 缪巍 2015 物理学报 64 228501]

    [9]

    Chodorow U, Parka J, Garbat K, Pałka N, Czupryński K 2012 Phase Transitions 85 337

    [10]

    Chen Z Z, Zhao H Z, Li M, Bu J, Ma H 2015 Electro. Compon. Mater. 34 1 (in Chinese) [陈泽章, 赵红枝, 李萌, 补婧, 马恒 2015 电子元件与材料 34 1]

    [11]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese) [冯伟, 张戎, 曹俊诚 2015 物理学报 64 229501]

    [12]

    Chen C Y, Hsieh C F, Lin Y F, Pan R P, Pan C L 2004 Opt. Express 12 2625

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photonics 3 148

    [14]

    Zhu G, Li J N, Lin X W, Wang H F, Hu W, Zheng Z G, Cui H Q, Shen D, Lu Y Q 2012 J. Soc. Inf. Display 20 341

    [15]

    Savo S, Shrekenhamer D P, Adilla W J 2014 Adv. Opt. Mater. 2 275

    [16]

    Shrekenhamer D, Chen W C P, Adilla W J 2013 Phys. Rev. Lett. 110 177403

    [17]

    Yang F Z 2015 Acta Phys. Sin. 64 124214 (in Chinese) [杨傅子 2015 物理学报 64 124214]

    [18]

    Vieweg N, Shakfa M K, Scherger B, Mikulics M, Koch M 2010 J. Infrared Millim. Te. 31 1312

    [19]

    Vieweg N, Shakfa M, Koch M 2011 J. Infrared Millim. Te. 32 1367

    [20]

    Chen Z, Jiang Y, Jiang L, Ma H 2016 Spectrochim. Acta A 153 741

    [21]

    Park H, Parrott E P, Fan F, Lim M, Han H, Chigrinov V G, Pickwell M E 2012 Opt. Express 20 11899

    [22]

    Reuter M, Garbat K, Vieweg N, Fischer B M, Dąbrowski R, Koch M, Dziaduszek J, Urban S 2013 J. Mater. Chem. C 1 4457

    [23]

    Li J, Gauza S, Wu S T 2004 J. Appl. Phys. 96 19

    [24]

    Li J, Wu S T 2004 J. Appl. Phys. 95 896

    [25]

    Li J, Wu S T 2004 J. Appl. Phys. 96 6253

    [26]

    Hui Y W, Ajay C, Shyi L L 2005 J. Comput. Chem. 26 1543

    [27]

    Chang C K, Deshmukh V, Chaudhari A, Lee S L 2013 J. Comput. Theor. Nanosic. 10 684

    [28]

    Frisch M, Trucks G, Schlegel H B, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G 2009 Inc. Wallingford, CT 200 2

    [29]

    Zhao Y, Truhlar D G 2011 Chem. Phys. Lett. 502 1

    [30]

    Zhao Y, Truhlar D G 2008 J. Chem. Theor. Comput. 4 1849

    [31]

    Simpson S, Richardson R, Hanna S 2005 J. Chem. Phys. 123 134904

    [32]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580

    [33]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics. 14 33

  • [1]

    Xu J Z, Zhang X C 2007 Terahertz Science and Technology and Application (Beijing: Bejing University Press) p1 (in Chinese) [许景周, 张希成2007 太赫兹科学技术和应用 (北京: 北京大学出版社) 第1页]

    [2]

    Lee Y Z (translated by Cui W Z) 2012 Principles of Terahertz Science and Technology (Beijing: National Defend Industy Press) pp1-3 (in Chinese) [李允植 著 (崔万照 译) 2012 太赫兹科学与技术原理 (北京: 国防工业出版社)第1-3页]

    [3]

    Chen Z Z, Jiang Y R, Li M, Jiang L L, Ma H 2015 Liq. Cryst. 42 947

    [4]

    Lee M, Wanke M C 2007 Science 316 64

    [5]

    Zhao W, Ju D, Jiang Y 2014 Appl. Phys. Express 7 124301

    [6]

    Nakanishi H, Fujiwara S, Takayama K, Kawayama I, Murakami HTonouchi M 2012 Appl. Phys. Express 5 112301

    [7]

    O'hara J F, Withayachumnankul W, Al-Naib I 2012 J. Infrared Millim. Te. 33 245

    [8]

    Shi S C, Li J, Zhang W, Miao W 2015 Acta Phys. Sin. 64 228501 (in Chinese) [史生才, 李婧, 张文, 缪巍 2015 物理学报 64 228501]

    [9]

    Chodorow U, Parka J, Garbat K, Pałka N, Czupryński K 2012 Phase Transitions 85 337

    [10]

    Chen Z Z, Zhao H Z, Li M, Bu J, Ma H 2015 Electro. Compon. Mater. 34 1 (in Chinese) [陈泽章, 赵红枝, 李萌, 补婧, 马恒 2015 电子元件与材料 34 1]

    [11]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese) [冯伟, 张戎, 曹俊诚 2015 物理学报 64 229501]

    [12]

    Chen C Y, Hsieh C F, Lin Y F, Pan R P, Pan C L 2004 Opt. Express 12 2625

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photonics 3 148

    [14]

    Zhu G, Li J N, Lin X W, Wang H F, Hu W, Zheng Z G, Cui H Q, Shen D, Lu Y Q 2012 J. Soc. Inf. Display 20 341

    [15]

    Savo S, Shrekenhamer D P, Adilla W J 2014 Adv. Opt. Mater. 2 275

    [16]

    Shrekenhamer D, Chen W C P, Adilla W J 2013 Phys. Rev. Lett. 110 177403

    [17]

    Yang F Z 2015 Acta Phys. Sin. 64 124214 (in Chinese) [杨傅子 2015 物理学报 64 124214]

    [18]

    Vieweg N, Shakfa M K, Scherger B, Mikulics M, Koch M 2010 J. Infrared Millim. Te. 31 1312

    [19]

    Vieweg N, Shakfa M, Koch M 2011 J. Infrared Millim. Te. 32 1367

    [20]

    Chen Z, Jiang Y, Jiang L, Ma H 2016 Spectrochim. Acta A 153 741

    [21]

    Park H, Parrott E P, Fan F, Lim M, Han H, Chigrinov V G, Pickwell M E 2012 Opt. Express 20 11899

    [22]

    Reuter M, Garbat K, Vieweg N, Fischer B M, Dąbrowski R, Koch M, Dziaduszek J, Urban S 2013 J. Mater. Chem. C 1 4457

    [23]

    Li J, Gauza S, Wu S T 2004 J. Appl. Phys. 96 19

    [24]

    Li J, Wu S T 2004 J. Appl. Phys. 95 896

    [25]

    Li J, Wu S T 2004 J. Appl. Phys. 96 6253

    [26]

    Hui Y W, Ajay C, Shyi L L 2005 J. Comput. Chem. 26 1543

    [27]

    Chang C K, Deshmukh V, Chaudhari A, Lee S L 2013 J. Comput. Theor. Nanosic. 10 684

    [28]

    Frisch M, Trucks G, Schlegel H B, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G 2009 Inc. Wallingford, CT 200 2

    [29]

    Zhao Y, Truhlar D G 2011 Chem. Phys. Lett. 502 1

    [30]

    Zhao Y, Truhlar D G 2008 J. Chem. Theor. Comput. 4 1849

    [31]

    Simpson S, Richardson R, Hanna S 2005 J. Chem. Phys. 123 134904

    [32]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580

    [33]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics. 14 33

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [3] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [4] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [5] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [6] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [7] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [8] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [9] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [10] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [11] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [12] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件. 物理学报, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [13] 关荣华. 表面极化对弱锚定向列液晶盒饱和特性的影响. 物理学报, 2012, 61(15): 156102. doi: 10.7498/aps.61.156102
    [14] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [15] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响. 物理学报, 2011, 60(1): 019503. doi: 10.7498/aps.60.019503
    [16] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [17] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [18] 吴犇, 张会, 朱良栋, 郭澎, 王倩, 高润梅, 常胜江. 基于布拉格光纤的磁场调制液晶太赫兹开关. 物理学报, 2009, 58(3): 1838-1843. doi: 10.7498/aps.58.1838
    [19] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 物理学报, 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  5823
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-05-15
  • 刊出日期:  2016-07-05

/

返回文章
返回