搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟

李丽丽 张晓虹 王玉龙 国家辉 张双

基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟

李丽丽, 张晓虹, 王玉龙, 国家辉, 张双
PDF
导出引用
导出核心图
  • 模拟分子的结构与行为有助于更深刻地分析聚乙烯/蒙脱土(PE/MMT)纳米复合材料力学性能变化的微观机理.为此,以分子动力学为依据,利用Materials studio构建聚乙烯/蒙脱土纳米复合材料模型.在普适力场作用下,通过X射线衍射、径向分布函数以及相互作用能分别对纳米复合材料和纳米蒙脱土的微观结构和性能进行分析.仿真结果表明:有机化处理使蒙脱土的层间距增大79%;在蒙脱土质量分数为4.0 wt%时,PE/MMT纳米复合材料中存在明显的氢键作用,聚乙烯分子和蒙脱土片层间的相互作用能高达-390 kcal/mol,界面作用得到明显提高,最终形成稳定的材料结构,同时力学性能相比纯聚乙烯材料也得到改善,其中杨氏模量、体积模量以及剪切模量分别提高38%,21%和40%.分子模拟结果与实验实测结果相符,并验证了有机化蒙脱土改性聚乙烯绝缘材料会产生氢键作用.
      通信作者: 张晓虹, x_hzhang2002@hrbust.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB723308)和国家自然科学基金(批准号:51077029,51577045)资助的课题.
    [1]

    Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539

    [2]

    Zhang L D, Mu J M 2001 Nano Materials and Nano Structures (1st Ed.) (Beijing: Science Press) pp51-65(in Chinese) [张立德, 牟季美2001纳米材料和纳米结构第 1版(北京:科学出版社)第51–65页]

    [3]

    Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539

    [4]

    Lei Q Q, Fan Y, Wang X 2000 J. Inorg. Mater. 15 1107 (in Chinese) [高镰, 李炜群, 王宏志2000无机材料学报15 1107]

    [5]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬2013物理学报62 036801]

    [6]

    Lu Y, Li J L, Yang J F, Li P 2015 J. Inorg. Mater. 30 277 (in Chinese) [鲁元, 李京龙, 杨建锋, 李鹏2015无机材料学报30 277]

    [7]

    Cheng S, L H M, Cui J Y 2012 Acta Phys. Sin. 61 036203 (in Chinese) [程塞, 吕慧民, 崔静雅2012物理学报61 036203]

    [8]

    Yu L H, Ma B Y, Cao J, Xu J H 2013 Acta Phys. Sin. 62 076202 (in Chinese) [喻利花, 马冰洋, 曹峻, 许俊华2013物理学报62 076202]

    [9]

    Rappe A K, Casewit C J, Colwell K S, GoddardI Ⅱ W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [10]

    Kang J W, Choi K, Jo W H, Hsu S L 1998 Polymer 39 7079

    [11]

    Boek E S, Coveney P V, Skipper N T 1995 Langmuir 11 4629

    [12]

    Wang J, Wang J X, Zeng F G, Wu X L 2010 Acta Chim. Sin. 68 1653 (in Chinese) [王进, 王军霞, 曾凡桂, 吴秀玲2010化学学报68 1653]

    [13]

    Xu J F, Gu T T, Shen W L, Wang X P, Ma Y W, Peng L, Li X D 2016 J. China Univ. Petroleum (Edition of Natural Science) 40 83(in Chinese) [徐加放, 顾甜甜, 沈文丽, 王晓璞, 马英文, 彭林, 李小迪2016中国石油大学学报(自然科学版) 40 83]

    [14]

    Young D A, Smith D E 2000 J. Phys. Chem. B 104 9163

    [15]

    Qi Z N, Shang W Y 2002 Theory and Practice of Polymer/Layered Silicate Nanocomposites (1st Ed.) (Beijing: Chemical Industry Press) p5(in Chinese) [漆宗能, 尚文宇2002聚合物/层状硅酸盐纳米复合材料理论与实践(第1 版) (北京:化学工业出版社)第5页]

    [16]

    Wang J, Zeng F G, Wang J X 2005 J. Chin. Ceram. Soc. 33 996(in Chinese) [王进, 曾凡桂, 王军霞2005硅酸盐学报33 996]

    [17]

    Jia H P, Su X J, Hou G L, Cao X P, Bi S, Liu Z H 2013 J. Chem. Ind. Eng. 64 1862(in Chinese) [贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉2013化工学报64 1862]

    [18]

    Guo J H 2014 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [国家辉2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [19]

    Gao J G 2009 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [高俊国2009硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [20]

    Zhang X H, Guo N, Gao J G 2009 High Voltage Engineering 35 282(in Chinese) [张晓虹, 郭宁, 高俊国2009高电压技术35 282]

    [21]

    Xu Z L 2006 Elastic Mechanics (4th Ed.) (Beijing: Higher Education Press) pp20-203(in Chinese) [徐芝纶2006弹性力学第 4版(北京:高等教育出版社)第20–203页]

    [22]

    Cheng Y J, Guo N, Wang R S, Zhang X H 2015 Acta Mater. Compos. Sin. 32 94 (in Chinese) [程羽佳, 郭宁, 王若石, 张晓虹2015复合材料学报32 94]

    [23]

    Danikas M G, Tanaka T 2009 IEEE Electr. Insul. Mag. 25 19

  • [1]

    Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539

    [2]

    Zhang L D, Mu J M 2001 Nano Materials and Nano Structures (1st Ed.) (Beijing: Science Press) pp51-65(in Chinese) [张立德, 牟季美2001纳米材料和纳米结构第 1版(北京:科学出版社)第51–65页]

    [3]

    Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539

    [4]

    Lei Q Q, Fan Y, Wang X 2000 J. Inorg. Mater. 15 1107 (in Chinese) [高镰, 李炜群, 王宏志2000无机材料学报15 1107]

    [5]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬2013物理学报62 036801]

    [6]

    Lu Y, Li J L, Yang J F, Li P 2015 J. Inorg. Mater. 30 277 (in Chinese) [鲁元, 李京龙, 杨建锋, 李鹏2015无机材料学报30 277]

    [7]

    Cheng S, L H M, Cui J Y 2012 Acta Phys. Sin. 61 036203 (in Chinese) [程塞, 吕慧民, 崔静雅2012物理学报61 036203]

    [8]

    Yu L H, Ma B Y, Cao J, Xu J H 2013 Acta Phys. Sin. 62 076202 (in Chinese) [喻利花, 马冰洋, 曹峻, 许俊华2013物理学报62 076202]

    [9]

    Rappe A K, Casewit C J, Colwell K S, GoddardI Ⅱ W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [10]

    Kang J W, Choi K, Jo W H, Hsu S L 1998 Polymer 39 7079

    [11]

    Boek E S, Coveney P V, Skipper N T 1995 Langmuir 11 4629

    [12]

    Wang J, Wang J X, Zeng F G, Wu X L 2010 Acta Chim. Sin. 68 1653 (in Chinese) [王进, 王军霞, 曾凡桂, 吴秀玲2010化学学报68 1653]

    [13]

    Xu J F, Gu T T, Shen W L, Wang X P, Ma Y W, Peng L, Li X D 2016 J. China Univ. Petroleum (Edition of Natural Science) 40 83(in Chinese) [徐加放, 顾甜甜, 沈文丽, 王晓璞, 马英文, 彭林, 李小迪2016中国石油大学学报(自然科学版) 40 83]

    [14]

    Young D A, Smith D E 2000 J. Phys. Chem. B 104 9163

    [15]

    Qi Z N, Shang W Y 2002 Theory and Practice of Polymer/Layered Silicate Nanocomposites (1st Ed.) (Beijing: Chemical Industry Press) p5(in Chinese) [漆宗能, 尚文宇2002聚合物/层状硅酸盐纳米复合材料理论与实践(第1 版) (北京:化学工业出版社)第5页]

    [16]

    Wang J, Zeng F G, Wang J X 2005 J. Chin. Ceram. Soc. 33 996(in Chinese) [王进, 曾凡桂, 王军霞2005硅酸盐学报33 996]

    [17]

    Jia H P, Su X J, Hou G L, Cao X P, Bi S, Liu Z H 2013 J. Chem. Ind. Eng. 64 1862(in Chinese) [贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉2013化工学报64 1862]

    [18]

    Guo J H 2014 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [国家辉2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [19]

    Gao J G 2009 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [高俊国2009硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [20]

    Zhang X H, Guo N, Gao J G 2009 High Voltage Engineering 35 282(in Chinese) [张晓虹, 郭宁, 高俊国2009高电压技术35 282]

    [21]

    Xu Z L 2006 Elastic Mechanics (4th Ed.) (Beijing: Higher Education Press) pp20-203(in Chinese) [徐芝纶2006弹性力学第 4版(北京:高等教育出版社)第20–203页]

    [22]

    Cheng Y J, Guo N, Wang R S, Zhang X H 2015 Acta Mater. Compos. Sin. 32 94 (in Chinese) [程羽佳, 郭宁, 王若石, 张晓虹2015复合材料学报32 94]

    [23]

    Danikas M G, Tanaka T 2009 IEEE Electr. Insul. Mag. 25 19

  • [1] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [6] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [7] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [9] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [10] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [11] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [12] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [13] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [14] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [15] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [16] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [17] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制. 物理学报, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [18] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [19] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [20] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  459
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-15
  • 修回日期:  2016-07-18
  • 刊出日期:  2016-10-05

基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟

  • 1. 哈尔滨理工大学电气与电子工程学院, 工程电介质及其应用教育部重点实验室, 哈尔滨 150080;
  • 2. 哈尔滨理工大学荣成学院, 荣成 264300
  • 通信作者: 张晓虹, x_hzhang2002@hrbust.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2012CB723308)和国家自然科学基金(批准号:51077029,51577045)资助的课题.

摘要: 模拟分子的结构与行为有助于更深刻地分析聚乙烯/蒙脱土(PE/MMT)纳米复合材料力学性能变化的微观机理.为此,以分子动力学为依据,利用Materials studio构建聚乙烯/蒙脱土纳米复合材料模型.在普适力场作用下,通过X射线衍射、径向分布函数以及相互作用能分别对纳米复合材料和纳米蒙脱土的微观结构和性能进行分析.仿真结果表明:有机化处理使蒙脱土的层间距增大79%;在蒙脱土质量分数为4.0 wt%时,PE/MMT纳米复合材料中存在明显的氢键作用,聚乙烯分子和蒙脱土片层间的相互作用能高达-390 kcal/mol,界面作用得到明显提高,最终形成稳定的材料结构,同时力学性能相比纯聚乙烯材料也得到改善,其中杨氏模量、体积模量以及剪切模量分别提高38%,21%和40%.分子模拟结果与实验实测结果相符,并验证了有机化蒙脱土改性聚乙烯绝缘材料会产生氢键作用.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回