搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯剪纸的大变形拉伸力学行为研究

韩同伟 李攀攀

石墨烯剪纸的大变形拉伸力学行为研究

韩同伟, 李攀攀
PDF
导出引用
  • 将传统宏观剪纸技术应用于纳观尺度,通过引入圆角矩形切口图案构建了石墨烯剪纸.采用分子动力学方法研究了单层与双层石墨烯剪纸的大变形拉伸力学行为和变形破坏机制,并系统地研究了关于切口图案的3个无量纲几何参数对单层石墨烯剪纸的力学性能和变形破坏机制的影响规律.研究发现,通过引入规则切口,可以有效地大幅度提高石墨烯的延展性,其断裂应变可达到完美石墨烯的56倍.通过控制3个几何参数,可以有效地调控石墨烯的延展性和力学行为.研究结果表明,古老的剪纸技术为提高二维纳米材料延展性、实现光电纳米器件可延展柔性化提供了一种新的解决方案.
      通信作者: 韩同伟, twhan@ujs.edu.cn
    • 基金项目: 江苏省自然科学基金(批准号:BK2011490)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [6]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898

    [7]

    Khang D Y, Jiang H Q, Huang Y, Rogers J A 2006 Science 311 208

    [8]

    Kim D H, Ahn J H, Choi W M, Kim H S, Kim T H, Song J Z, Huang Y G Y, Liu Z J, Lu C, Rogers J A 2008 Science 320 507

    [9]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675

    [10]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543

    [11]

    Song Z M, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H Y, Jiang H Q 2014 Nat. Commun. 5 3140

    [12]

    Lamoureux A, Lee K, Shlian M, Forrest S R, Shtein M 2015 Nat. Commun. 6 8092

    [13]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204

    [14]

    Hanakata P Z, Qi Z A, Campbell D K, Park H S 2016 Nanoscale 8 458

    [15]

    Qi Z N, Campbell D K, Park H S 2014 Phys. Rev. B 90 245437

    [16]

    Lin J H, Fang W J, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [17]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.-Condens. Matter 14 783

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [20]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [21]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782

    [22]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [23]

    Nose S 1984 Mol. Phys. 52 255

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids. Struct. 45 4340

    [26]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) p14 (in Chinese) [赵亚溥 2014 纳米与介观力学(北京:科学出版社) 第14页]

    [27]

    Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [6]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898

    [7]

    Khang D Y, Jiang H Q, Huang Y, Rogers J A 2006 Science 311 208

    [8]

    Kim D H, Ahn J H, Choi W M, Kim H S, Kim T H, Song J Z, Huang Y G Y, Liu Z J, Lu C, Rogers J A 2008 Science 320 507

    [9]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675

    [10]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543

    [11]

    Song Z M, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H Y, Jiang H Q 2014 Nat. Commun. 5 3140

    [12]

    Lamoureux A, Lee K, Shlian M, Forrest S R, Shtein M 2015 Nat. Commun. 6 8092

    [13]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204

    [14]

    Hanakata P Z, Qi Z A, Campbell D K, Park H S 2016 Nanoscale 8 458

    [15]

    Qi Z N, Campbell D K, Park H S 2014 Phys. Rev. B 90 245437

    [16]

    Lin J H, Fang W J, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [17]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.-Condens. Matter 14 783

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [20]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [21]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782

    [22]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [23]

    Nose S 1984 Mol. Phys. 52 255

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids. Struct. 45 4340

    [26]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) p14 (in Chinese) [赵亚溥 2014 纳米与介观力学(北京:科学出版社) 第14页]

    [27]

    Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511

  • [1] 肖思, 秦应霖, 王慧, 王鹏, 马海铭, 何军, 王迎威. 辐射对称金字塔型剪纸的力学行为. 物理学报, 2020, 69(9): 096102. doi: 10.7498/aps.69.20200112
    [2] 章孝顺, 章定国, 陈思佳, 洪嘉振. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [3] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200781
    [4] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [5] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [6] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [7] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [11] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [12] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [13] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [14] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [15] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [16] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [17] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [18] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [19] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [20] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1075
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-03-05

石墨烯剪纸的大变形拉伸力学行为研究

  • 1. 江苏大学土木工程与力学学院, 镇江 212013
  • 通信作者: 韩同伟, twhan@ujs.edu.cn
    基金项目: 

    江苏省自然科学基金(批准号:BK2011490)资助的课题.

摘要: 将传统宏观剪纸技术应用于纳观尺度,通过引入圆角矩形切口图案构建了石墨烯剪纸.采用分子动力学方法研究了单层与双层石墨烯剪纸的大变形拉伸力学行为和变形破坏机制,并系统地研究了关于切口图案的3个无量纲几何参数对单层石墨烯剪纸的力学性能和变形破坏机制的影响规律.研究发现,通过引入规则切口,可以有效地大幅度提高石墨烯的延展性,其断裂应变可达到完美石墨烯的56倍.通过控制3个几何参数,可以有效地调控石墨烯的延展性和力学行为.研究结果表明,古老的剪纸技术为提高二维纳米材料延展性、实现光电纳米器件可延展柔性化提供了一种新的解决方案.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回