搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯剪纸的大变形拉伸力学行为研究

韩同伟 李攀攀

石墨烯剪纸的大变形拉伸力学行为研究

韩同伟, 李攀攀
PDF
导出引用
  • 将传统宏观剪纸技术应用于纳观尺度,通过引入圆角矩形切口图案构建了石墨烯剪纸.采用分子动力学方法研究了单层与双层石墨烯剪纸的大变形拉伸力学行为和变形破坏机制,并系统地研究了关于切口图案的3个无量纲几何参数对单层石墨烯剪纸的力学性能和变形破坏机制的影响规律.研究发现,通过引入规则切口,可以有效地大幅度提高石墨烯的延展性,其断裂应变可达到完美石墨烯的56倍.通过控制3个几何参数,可以有效地调控石墨烯的延展性和力学行为.研究结果表明,古老的剪纸技术为提高二维纳米材料延展性、实现光电纳米器件可延展柔性化提供了一种新的解决方案.
      通信作者: 韩同伟, twhan@ujs.edu.cn
    • 基金项目: 江苏省自然科学基金(批准号:BK2011490)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [6]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898

    [7]

    Khang D Y, Jiang H Q, Huang Y, Rogers J A 2006 Science 311 208

    [8]

    Kim D H, Ahn J H, Choi W M, Kim H S, Kim T H, Song J Z, Huang Y G Y, Liu Z J, Lu C, Rogers J A 2008 Science 320 507

    [9]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675

    [10]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543

    [11]

    Song Z M, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H Y, Jiang H Q 2014 Nat. Commun. 5 3140

    [12]

    Lamoureux A, Lee K, Shlian M, Forrest S R, Shtein M 2015 Nat. Commun. 6 8092

    [13]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204

    [14]

    Hanakata P Z, Qi Z A, Campbell D K, Park H S 2016 Nanoscale 8 458

    [15]

    Qi Z N, Campbell D K, Park H S 2014 Phys. Rev. B 90 245437

    [16]

    Lin J H, Fang W J, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [17]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.-Condens. Matter 14 783

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [20]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [21]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782

    [22]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [23]

    Nose S 1984 Mol. Phys. 52 255

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids. Struct. 45 4340

    [26]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) p14 (in Chinese) [赵亚溥 2014 纳米与介观力学(北京:科学出版社) 第14页]

    [27]

    Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [6]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898

    [7]

    Khang D Y, Jiang H Q, Huang Y, Rogers J A 2006 Science 311 208

    [8]

    Kim D H, Ahn J H, Choi W M, Kim H S, Kim T H, Song J Z, Huang Y G Y, Liu Z J, Lu C, Rogers J A 2008 Science 320 507

    [9]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675

    [10]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543

    [11]

    Song Z M, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H Y, Jiang H Q 2014 Nat. Commun. 5 3140

    [12]

    Lamoureux A, Lee K, Shlian M, Forrest S R, Shtein M 2015 Nat. Commun. 6 8092

    [13]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204

    [14]

    Hanakata P Z, Qi Z A, Campbell D K, Park H S 2016 Nanoscale 8 458

    [15]

    Qi Z N, Campbell D K, Park H S 2014 Phys. Rev. B 90 245437

    [16]

    Lin J H, Fang W J, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [17]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.-Condens. Matter 14 783

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [20]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [21]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782

    [22]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [23]

    Nose S 1984 Mol. Phys. 52 255

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids. Struct. 45 4340

    [26]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) p14 (in Chinese) [赵亚溥 2014 纳米与介观力学(北京:科学出版社) 第14页]

    [27]

    Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2363
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-03-05

石墨烯剪纸的大变形拉伸力学行为研究

  • 1. 江苏大学土木工程与力学学院, 镇江 212013
  • 通信作者: 韩同伟, twhan@ujs.edu.cn
    基金项目: 

    江苏省自然科学基金(批准号:BK2011490)资助的课题.

摘要: 将传统宏观剪纸技术应用于纳观尺度,通过引入圆角矩形切口图案构建了石墨烯剪纸.采用分子动力学方法研究了单层与双层石墨烯剪纸的大变形拉伸力学行为和变形破坏机制,并系统地研究了关于切口图案的3个无量纲几何参数对单层石墨烯剪纸的力学性能和变形破坏机制的影响规律.研究发现,通过引入规则切口,可以有效地大幅度提高石墨烯的延展性,其断裂应变可达到完美石墨烯的56倍.通过控制3个几何参数,可以有效地调控石墨烯的延展性和力学行为.研究结果表明,古老的剪纸技术为提高二维纳米材料延展性、实现光电纳米器件可延展柔性化提供了一种新的解决方案.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回