搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼烯和碱土金属硼化物二维纳米材料的制备、结构、物性及应用研究

郭泽堃 田颜 甘海波 黎子娟 张彤 许宁生 陈军 陈焕君 邓少芝 刘飞

硼烯和碱土金属硼化物二维纳米材料的制备、结构、物性及应用研究

郭泽堃, 田颜, 甘海波, 黎子娟, 张彤, 许宁生, 陈军, 陈焕君, 邓少芝, 刘飞
PDF
导出引用
导出核心图
  • 随着石墨烯研究的兴起,二维纳米材料得以迅速发展.在众多的二维纳米材料中,硼烯和碱土金属硼化物二维材料由于具有高费米速度、高杨氏模量、高透光性、高延展性、高度的各向异性、大的泊松比和高的化学稳定性等独特的性质,成为研究人员关注的焦点.本文侧重介绍目前硼烯和碱土金属硼化物二维纳米材料的制备工艺、结构、物性和应用情况.首先总结了目前硼烯的主要结构构型和制备及掺杂工艺;其次介绍了碱土金属硼化物二维纳米材料的理论结构构型和可能的制备路线;最后对硼烯和二维碱土金属硼化物纳米材料的物理特性进行归纳总结,同时预测它们未来最可能实现应用的领域.
      通信作者: 刘飞, liufei@mail.sysu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB933601)、国家重大科学仪器设备开发专项(批准号:2013YQ12034506)、广东省自然科学基金(批准号:2016A030313313)、教育部留学回国人员科研启动基金(批准号:教外司留[2014]1685号)、中央高校基本科研业务费专项资金(批准号:111gzd05)和光电材料与技术国家重点实验室自主课题(批准号:OEMT-2015-RC-05)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [3]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Balandin A A 2011 Nat. Mater. 10 569

    [6]

    Palmer D J 2006 Mater. Today 9 13

    [7]

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21 (in Chinese) [蔡乐, 王华平, 于贵 2016 物理学进展 36 21]

    [8]

    Huo N J, Yang Y J, Li J B 2017 J. Semicond. 38 031002

    [9]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [10]

    Grazianetti C, Cinquanta E, Molle A 2016 2D Mater. 3 012001

    [11]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [12]

    Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M 2015 Small 11 640

    [13]

    Camilli L, Sutter E, Sutter P 2014 2D Mater. 1 025003

    [14]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423

    [15]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112

    [16]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513

    [17]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [18]

    Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284

    [19]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563

    [20]

    Lherbier A, Botello-Mendez A R, Charlier J C 2016 2D Mater. 3 045006

    [21]

    Jiao Y, Ma F, Bell J, Bilic A, Du A 2016 Angew. Chem. Int. Ed. Engl. 55 10292

    [22]

    Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z, Lu J 2012 Sci. Rep. 2 853

    [23]

    Ye M, Quhe R, Zheng J X, Ni Z Y, Wang Y Y, Yuan Y K, Tse G, Shi J J, Gao Z X, Lu J 2014 Phys. E: Low-Dimensional Syst. Nanostruct. 59 60

    [24]

    Xie S Y, Li X B, Tian W Q, Chen N K, Wang Y, Zhang S, Sun H B 2015 Phys. Chem. Chem. Phys. 17 1093

    [25]

    Okatov S V, Ivanovskii A L, Medvedeva Y E, Medvedeva N I 2001 Phys. Status Solidi B 225 R3

    [26]

    Ackland K, Venkatesan M, Coey J M D 2012 J. Appl. Phys. 111 07A322

    [27]

    Zhang L, Liu H H, Liu L J, Zhao G Q, Wu Y, Min G H 2017 J. Inorganic Mater. 32 555

    [28]

    Gan L Y, Wang R, Jin Y J, Ling D B, Zhao J Z, Xu W P, Liu J F, Xu H 2017 Phys. Chem. Chem. Phys. 19 8210

    [29]

    Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q 2015 Angew. Chem. Int. Ed. Engl. 54 15473

    [30]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563

    [31]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401

    [32]

    Zhao Y C, Zeng S M, Ni J 2016 Appl. Phys. Lett. 108 242601

    [33]

    Zhang H, Li Y, Hou J, Du A, Chen Z 2016 Nano Lett. 16 6124

    [34]

    Zhang X, Hu J, Cheng Y, Yang H Y, Yao Y, Yang S A 2016 Nanoscale 8 15340

    [35]

    Jiang H R, Lu Z H, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97

    [36]

    Lopez-Bezanilla A, Littlewood P B 2016 Phys. Rev. B 93 241405

    [37]

    Li W L, Jian T, Chen X, Chen T T, Lopez G V, Li J, Wang L S 2016 Angew. Chem. Int. Ed. Engl. 55 7358

    [38]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Lai X Y, Xiao Z M, Xie W G, Deng S Z, Chen J, She J C, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [39]

    Liu F, Gan H B, Tang D M, Cao Y Z, Mo X S, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2014 Small 10 685

    [40]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [41]

    Xie S S, Chen H, Solodkyi I, Vasylkiv O, Tok A I Y 2015 Scr. Mater. 99 69

    [42]

    Zhou M Y, Liu C S, Yan X H 2015 J. Appl. Phys. 117 114307

    [43]

    Zhou X F, Oganov A R, Shao X, Zhu Q, Wang H T 2014 Phys. Rev. Lett. 113 176101

    [44]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622

    [45]

    Ni G X, Zheng Y, Bae S, Kim H R, Pachoud A, Kim Y S, Tan C L, Im D, Ahn J H, Hong B H, Ozyilmaz B 2012 ACS Nano 6 1158

    [46]

    Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J, Loh K P 2011 ACS Nano 5 9927

    [47]

    Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Waltont S G 2012 Nano Lett. 12 102

    [48]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [49]

    Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K, Tsukagoshi K 2013 Appl. Phys. Express 6 075101

    [50]

    Ding X L, Liu X X, Huang Y Y, Zhang X F, Zhao Q J, Xiang X H, Li G L, He P F, Wen Z Y, Li J, Huang Y H 2016 Nano Energy 27 647

    [51]

    Tsai H S, Hsiao C H, Lin Y P, Chen C W, Ouyang H, Liang J H 2016 Small 12 5251

    [52]

    Mannix A J, Kiraly B, Hersam M C, Guisinger N P 2017 Nat. Rev. Chem. 1 0014

    [53]

    Abanin D A, Levitov L S 2008 Phys. Rev. B 78 035416

    [54]

    Jun Y W, Choi J S, Cheon J 2006 Angew. Chem. Int. Ed. Engl. 45 3414

    [55]

    Fan L, Zou J, Li Z, Li X, Wang K, Wei J, Zhong M, Wu D, Xu Z, Zhu H 2012 Nanotechnology 23 115605

    [56]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [57]

    Zhang G, Wang J, Wu Z, Shi R, Ouyang W, Amini A, Chandrashekar B N, Wang N, Cheng C 2017 ACS Appl. Mater. Interfaces 9 763

    [58]

    Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [59]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413

    [60]

    Evans M H, Joannopoulos J D, Pantelides S T 2005 Phys. Rev. B 72 045434

    [61]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257

    [62]

    Li W L, Zhao Y F, Hu H S, Li J, Wang L S 2014 Angew. Chem. Int. Ed. Engl. 53 5540

    [63]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113

    [64]

    Fowler J E, Ugalde J M 2000 J. Phys. Chem. A 104 397

    [65]

    Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I 2010 Nat. Chem. 2 202

    [66]

    Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I 2013 J. Chem. Phys. 139 144307

    [67]

    Boustani I 1997 Phys. Rev. B 55 16426

    [68]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. Engl. 52 3156

    [69]

    Zhang Z, Yang Y, Gao G, Yakobson B I 2015 Angew. Chem. Int. Ed. Engl. 54 13022

    [70]

    Yuan J H, Zhang L W, Liew K M 2015 RSC Adv. 5 74399

    [71]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059

    [72]

    Xu S G, Zhao Y J, Liao J H, Yang X B, Xu H 2016 Nano Res. 9 2616

    [73]

    Piazza Z A, Popov I A, Li W L, Pal R, Zeng X C, Boldyrev A I, Wang L S 2014 J. Chem. Phys. 141 034303

    [74]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 CrystEngComm 18 1223

    [75]

    Das S K, Bedar A, Kannan A, Jasuja K 2015 Sci. Rep. 5 10522

    [76]

    Tynell T, Aizawa T, Ohkubo I, Nakamura K, Mori T 2016 J. Cryst. Growth 449 10

    [77]

    Liu H H, Zhang L, Zhao G Q, Feng G, Min G H 2015 Ceram. Int. 41 7745

    [78]

    Dorneles L S, Venkatesan M, Moliner M, Lunney J G, Coey J M D 2004 Appl. Phys. Lett. 85 6377

    [79]

    Kato Y, Shiraishi N, Tsuchimine N, Kobayashi S, Yoshimoto M 2010 J. Cryst. Growth 312 378

    [80]

    Stankiewicz J, Rosa P F S, Schlottmann P, Fisk Z 2016 Phys. Rev. B 94 125141

    [81]

    Kou L, Ma Y, Tang C, Sun Z, Du A, Chen C 2016 Nano Lett. 16 7910

    [82]

    Padilha J E, Miwa R H, Fazzio A 2016 Phys. Chem. Chem. Phys. 18 25491

    [83]

    Massote D V P, Liang L B, Kharche N, Meunier V 2016 Phys. Rev. B 94 195416

    [84]

    Sun H, Li Q, Wan X G 2016 Phys. Chem. Chem. Phys. 18 14927

    [85]

    Wang H F, Li Q F, Gao Y, Miao F, Zhou X F, Wan X G 2016 New J. Phys. 18 073016

    [86]

    Zabolotskiy A D, Lozovik Y E 2016 Phys. Rev. B 94 165403

    [87]

    Pang Z Q, Qian X, Wei Y J, Yang R G 2016 EPL 116 36001

    [88]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301

    [89]

    Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T 2016 J. Power Sources 329 456

    [90]

    Hardikar R P, Das D, Han S S, Lee K R, Singh A K 2014 Phys. Chem. Chem. Phys. 16 16502

    [91]

    Huang S Z, Zhang L L, Zhu J L, Jiang S P, Shen P K 2016 J. Mater. Chem. A 4 14155

    [92]

    Meng W, Wen L N, Song Z H, Cao N, Qin X 2017 J. Solid State Electrochem. 21 665

    [93]

    Wang M, Yang Y, Yang Z Z, Gu L, Chen Q W, Yu Y 2017 Adv. Sci. 4 1600468

    [94]

    Jena N K, Araujo R B, Shukla V, Ahuja R 2017 ACS Appl. Mater. Interfaces 9 16148

    [95]

    Rao D W, Zhang L Y, Meng Z S, Zhang X R, Wang Y H, Qiao G J, Shen X Q, Xia H, Liu J H, Lu R F 2017 J. Mater. Chem. A 5 2328

    [96]

    Kou L, Ma Y, Zhou L, Sun Z, Gu Y, Du A, Smith S, Chen C 2016 Nanoscale 8 20111

    [97]

    Shi L, Ling C Y, Ouyang Y X, Wang J L 2017 Nanoscale 9 533

    [98]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306

    [99]

    Li L L, Zhang H, Cheng X L 2017 Comput. Mater. Sci. 137 119

    [100]

    Wang J C, Du Y, Sun L X 2016 Int. J. Hydrogen Energy 41 5276

    [101]

    Tayran C, Aydin S, Cakmak M, Ellialtioglu S 2016 Comput. Mater. Sci. 124 130

    [102]

    Sahle C J, Sternemann C, Giacobbe C, Yan Y G, Weis C, Harder M, Forov Y, Spiekermann G, Tolan M, Krisch M, Remhof A 2016 Phys. Chem. Chem. Phys. 18 19866

    [103]

    Ramanan B A 2017 J. Mol. Struct. 1131 171

    [104]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [105]

    Li X, Huang X L, Duan D F, Wu G, Liu M K, Zhuang Q, Wei S L, Huang Y P, Li F F, Zhou Q, Liu B B, Cui T 2016 Rsc. Adv. 6 18077

    [106]

    Hudson Z M, Wang S 2009 Acc. Chem. Res. 42 1584

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [3]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Balandin A A 2011 Nat. Mater. 10 569

    [6]

    Palmer D J 2006 Mater. Today 9 13

    [7]

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21 (in Chinese) [蔡乐, 王华平, 于贵 2016 物理学进展 36 21]

    [8]

    Huo N J, Yang Y J, Li J B 2017 J. Semicond. 38 031002

    [9]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [10]

    Grazianetti C, Cinquanta E, Molle A 2016 2D Mater. 3 012001

    [11]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [12]

    Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M 2015 Small 11 640

    [13]

    Camilli L, Sutter E, Sutter P 2014 2D Mater. 1 025003

    [14]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423

    [15]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112

    [16]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513

    [17]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [18]

    Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284

    [19]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563

    [20]

    Lherbier A, Botello-Mendez A R, Charlier J C 2016 2D Mater. 3 045006

    [21]

    Jiao Y, Ma F, Bell J, Bilic A, Du A 2016 Angew. Chem. Int. Ed. Engl. 55 10292

    [22]

    Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z, Lu J 2012 Sci. Rep. 2 853

    [23]

    Ye M, Quhe R, Zheng J X, Ni Z Y, Wang Y Y, Yuan Y K, Tse G, Shi J J, Gao Z X, Lu J 2014 Phys. E: Low-Dimensional Syst. Nanostruct. 59 60

    [24]

    Xie S Y, Li X B, Tian W Q, Chen N K, Wang Y, Zhang S, Sun H B 2015 Phys. Chem. Chem. Phys. 17 1093

    [25]

    Okatov S V, Ivanovskii A L, Medvedeva Y E, Medvedeva N I 2001 Phys. Status Solidi B 225 R3

    [26]

    Ackland K, Venkatesan M, Coey J M D 2012 J. Appl. Phys. 111 07A322

    [27]

    Zhang L, Liu H H, Liu L J, Zhao G Q, Wu Y, Min G H 2017 J. Inorganic Mater. 32 555

    [28]

    Gan L Y, Wang R, Jin Y J, Ling D B, Zhao J Z, Xu W P, Liu J F, Xu H 2017 Phys. Chem. Chem. Phys. 19 8210

    [29]

    Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q 2015 Angew. Chem. Int. Ed. Engl. 54 15473

    [30]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 563

    [31]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401

    [32]

    Zhao Y C, Zeng S M, Ni J 2016 Appl. Phys. Lett. 108 242601

    [33]

    Zhang H, Li Y, Hou J, Du A, Chen Z 2016 Nano Lett. 16 6124

    [34]

    Zhang X, Hu J, Cheng Y, Yang H Y, Yao Y, Yang S A 2016 Nanoscale 8 15340

    [35]

    Jiang H R, Lu Z H, Wu M C, Ciucci F, Zhao T S 2016 Nano Energy 23 97

    [36]

    Lopez-Bezanilla A, Littlewood P B 2016 Phys. Rev. B 93 241405

    [37]

    Li W L, Jian T, Chen X, Chen T T, Lopez G V, Li J, Wang L S 2016 Angew. Chem. Int. Ed. Engl. 55 7358

    [38]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Lai X Y, Xiao Z M, Xie W G, Deng S Z, Chen J, She J C, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [39]

    Liu F, Gan H B, Tang D M, Cao Y Z, Mo X S, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2014 Small 10 685

    [40]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [41]

    Xie S S, Chen H, Solodkyi I, Vasylkiv O, Tok A I Y 2015 Scr. Mater. 99 69

    [42]

    Zhou M Y, Liu C S, Yan X H 2015 J. Appl. Phys. 117 114307

    [43]

    Zhou X F, Oganov A R, Shao X, Zhu Q, Wang H T 2014 Phys. Rev. Lett. 113 176101

    [44]

    Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I 2016 Nano Lett. 16 6622

    [45]

    Ni G X, Zheng Y, Bae S, Kim H R, Pachoud A, Kim Y S, Tan C L, Im D, Ahn J H, Hong B H, Ozyilmaz B 2012 ACS Nano 6 1158

    [46]

    Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J, Loh K P 2011 ACS Nano 5 9927

    [47]

    Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Waltont S G 2012 Nano Lett. 12 102

    [48]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [49]

    Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K, Tsukagoshi K 2013 Appl. Phys. Express 6 075101

    [50]

    Ding X L, Liu X X, Huang Y Y, Zhang X F, Zhao Q J, Xiang X H, Li G L, He P F, Wen Z Y, Li J, Huang Y H 2016 Nano Energy 27 647

    [51]

    Tsai H S, Hsiao C H, Lin Y P, Chen C W, Ouyang H, Liang J H 2016 Small 12 5251

    [52]

    Mannix A J, Kiraly B, Hersam M C, Guisinger N P 2017 Nat. Rev. Chem. 1 0014

    [53]

    Abanin D A, Levitov L S 2008 Phys. Rev. B 78 035416

    [54]

    Jun Y W, Choi J S, Cheon J 2006 Angew. Chem. Int. Ed. Engl. 45 3414

    [55]

    Fan L, Zou J, Li Z, Li X, Wang K, Wei J, Zhong M, Wu D, Xu Z, Zhu H 2012 Nanotechnology 23 115605

    [56]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [57]

    Zhang G, Wang J, Wu Z, Shi R, Ouyang W, Amini A, Chandrashekar B N, Wang N, Cheng C 2017 ACS Appl. Mater. Interfaces 9 763

    [58]

    Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [59]

    Kunstmann J, Quandt A 2006 Phys. Rev. B 74 035413

    [60]

    Evans M H, Joannopoulos J D, Pantelides S T 2005 Phys. Rev. B 72 045434

    [61]

    Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S 2014 J. Am. Chem. Soc. 136 12257

    [62]

    Li W L, Zhao Y F, Hu H S, Li J, Wang L S 2014 Angew. Chem. Int. Ed. Engl. 53 5540

    [63]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113

    [64]

    Fowler J E, Ugalde J M 2000 J. Phys. Chem. A 104 397

    [65]

    Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I 2010 Nat. Chem. 2 202

    [66]

    Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I 2013 J. Chem. Phys. 139 144307

    [67]

    Boustani I 1997 Phys. Rev. B 55 16426

    [68]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. Engl. 52 3156

    [69]

    Zhang Z, Yang Y, Gao G, Yakobson B I 2015 Angew. Chem. Int. Ed. Engl. 54 13022

    [70]

    Yuan J H, Zhang L W, Liew K M 2015 RSC Adv. 5 74399

    [71]

    Zhang Z H, Yang Y, Penev E S, Yakobson B I 2017 Adv. Funct. Mater. 27 1605059

    [72]

    Xu S G, Zhao Y J, Liao J H, Yang X B, Xu H 2016 Nano Res. 9 2616

    [73]

    Piazza Z A, Popov I A, Li W L, Pal R, Zeng X C, Boldyrev A I, Wang L S 2014 J. Chem. Phys. 141 034303

    [74]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 CrystEngComm 18 1223

    [75]

    Das S K, Bedar A, Kannan A, Jasuja K 2015 Sci. Rep. 5 10522

    [76]

    Tynell T, Aizawa T, Ohkubo I, Nakamura K, Mori T 2016 J. Cryst. Growth 449 10

    [77]

    Liu H H, Zhang L, Zhao G Q, Feng G, Min G H 2015 Ceram. Int. 41 7745

    [78]

    Dorneles L S, Venkatesan M, Moliner M, Lunney J G, Coey J M D 2004 Appl. Phys. Lett. 85 6377

    [79]

    Kato Y, Shiraishi N, Tsuchimine N, Kobayashi S, Yoshimoto M 2010 J. Cryst. Growth 312 378

    [80]

    Stankiewicz J, Rosa P F S, Schlottmann P, Fisk Z 2016 Phys. Rev. B 94 125141

    [81]

    Kou L, Ma Y, Tang C, Sun Z, Du A, Chen C 2016 Nano Lett. 16 7910

    [82]

    Padilha J E, Miwa R H, Fazzio A 2016 Phys. Chem. Chem. Phys. 18 25491

    [83]

    Massote D V P, Liang L B, Kharche N, Meunier V 2016 Phys. Rev. B 94 195416

    [84]

    Sun H, Li Q, Wan X G 2016 Phys. Chem. Chem. Phys. 18 14927

    [85]

    Wang H F, Li Q F, Gao Y, Miao F, Zhou X F, Wan X G 2016 New J. Phys. 18 073016

    [86]

    Zabolotskiy A D, Lozovik Y E 2016 Phys. Rev. B 94 165403

    [87]

    Pang Z Q, Qian X, Wei Y J, Yang R G 2016 EPL 116 36001

    [88]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301

    [89]

    Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T 2016 J. Power Sources 329 456

    [90]

    Hardikar R P, Das D, Han S S, Lee K R, Singh A K 2014 Phys. Chem. Chem. Phys. 16 16502

    [91]

    Huang S Z, Zhang L L, Zhu J L, Jiang S P, Shen P K 2016 J. Mater. Chem. A 4 14155

    [92]

    Meng W, Wen L N, Song Z H, Cao N, Qin X 2017 J. Solid State Electrochem. 21 665

    [93]

    Wang M, Yang Y, Yang Z Z, Gu L, Chen Q W, Yu Y 2017 Adv. Sci. 4 1600468

    [94]

    Jena N K, Araujo R B, Shukla V, Ahuja R 2017 ACS Appl. Mater. Interfaces 9 16148

    [95]

    Rao D W, Zhang L Y, Meng Z S, Zhang X R, Wang Y H, Qiao G J, Shen X Q, Xia H, Liu J H, Lu R F 2017 J. Mater. Chem. A 5 2328

    [96]

    Kou L, Ma Y, Zhou L, Sun Z, Gu Y, Du A, Smith S, Chen C 2016 Nanoscale 8 20111

    [97]

    Shi L, Ling C Y, Ouyang Y X, Wang J L 2017 Nanoscale 9 533

    [98]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306

    [99]

    Li L L, Zhang H, Cheng X L 2017 Comput. Mater. Sci. 137 119

    [100]

    Wang J C, Du Y, Sun L X 2016 Int. J. Hydrogen Energy 41 5276

    [101]

    Tayran C, Aydin S, Cakmak M, Ellialtioglu S 2016 Comput. Mater. Sci. 124 130

    [102]

    Sahle C J, Sternemann C, Giacobbe C, Yan Y G, Weis C, Harder M, Forov Y, Spiekermann G, Tolan M, Krisch M, Remhof A 2016 Phys. Chem. Chem. Phys. 18 19866

    [103]

    Ramanan B A 2017 J. Mol. Struct. 1131 171

    [104]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [105]

    Li X, Huang X L, Duan D F, Wu G, Liu M K, Zhuang Q, Wei S L, Huang Y P, Li F F, Zhou Q, Liu B B, Cui T 2016 Rsc. Adv. 6 18077

    [106]

    Hudson Z M, Wang S 2009 Acc. Chem. Res. 42 1584

  • [1] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [2] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [3] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用. 物理学报, 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [4] 陶强, 马帅领, 崔田, 朱品文. 过渡金属硼化物的结构与性质. 物理学报, 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [5] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [6] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [7] 高潭华, 郑福昌, 王晓春. 半氢化石墨烯与单层氮化硼复合体系的电子结构和磁性的调控. 物理学报, 2018, 67(16): 167101. doi: 10.7498/aps.67.20180538
    [8] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [9] 张琦锋, 顾有松, 曹培江, 刘 飞, 刘虹雯, 王岩国, 高鸿钧. 碳纳米管阵列、捆束的三步升温工艺制备及其形貌与结构. 物理学报, 2004, 53(3): 854-860. doi: 10.7498/aps.53.854
    [10] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [11] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性. 物理学报, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [12] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究. 物理学报, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [13] 靳常青, 刘邦贵, 柴永泉. 类MgB2硼化物晶体电子结构比较研究. 物理学报, 2003, 52(11): 2883-2889. doi: 10.7498/aps.52.2883
    [14] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [16] 王道俊. 氮化硼纳米片的电子结构和自旋调控. 物理学报, 2013, 62(5): 057302. doi: 10.7498/aps.62.057302
    [17] 孔令琦, 张春婧, 黄胜利, 朱贤方. 铬过渡层位置及金属沉积角度对纳米球刻蚀法制备二维银纳米点阵结构的影响. 物理学报, 2012, 61(3): 036102. doi: 10.7498/aps.61.036102
    [18] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [19] 通关藤结构组. 通关藤晶Ⅰ的分子结构、晶体结构与绝对构型. 物理学报, 1980, 29(8): 1014-1022. doi: 10.7498/aps.29.1014
    [20] 孙 强, 叶 令. 碱金属在沸石β-笼子中的构型及电子结构和磁性的研究. 物理学报, 1999, 48(2): 332-341. doi: 10.7498/aps.48.332
  • 引用本文:
    Citation:
计量
  • 文章访问数:  987
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-12
  • 修回日期:  2017-10-10
  • 刊出日期:  2017-11-05

硼烯和碱土金属硼化物二维纳米材料的制备、结构、物性及应用研究

  • 1. 中山大学电子与信息工程学院, 广东省显示材料与技术重点实验室, 光电材料与技术国家重点实验室, 广州 510275
  • 通信作者: 刘飞, liufei@mail.sysu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2013CB933601)、国家重大科学仪器设备开发专项(批准号:2013YQ12034506)、广东省自然科学基金(批准号:2016A030313313)、教育部留学回国人员科研启动基金(批准号:教外司留[2014]1685号)、中央高校基本科研业务费专项资金(批准号:111gzd05)和光电材料与技术国家重点实验室自主课题(批准号:OEMT-2015-RC-05)资助的课题.

摘要: 随着石墨烯研究的兴起,二维纳米材料得以迅速发展.在众多的二维纳米材料中,硼烯和碱土金属硼化物二维材料由于具有高费米速度、高杨氏模量、高透光性、高延展性、高度的各向异性、大的泊松比和高的化学稳定性等独特的性质,成为研究人员关注的焦点.本文侧重介绍目前硼烯和碱土金属硼化物二维纳米材料的制备工艺、结构、物性和应用情况.首先总结了目前硼烯的主要结构构型和制备及掺杂工艺;其次介绍了碱土金属硼化物二维纳米材料的理论结构构型和可能的制备路线;最后对硼烯和二维碱土金属硼化物纳米材料的物理特性进行归纳总结,同时预测它们未来最可能实现应用的领域.

English Abstract

参考文献 (106)

目录

    /

    返回文章
    返回