搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bcl-2蛋白抑制钙信号的建模与全局动力学分析

牛帅 帅建伟 祁宏

Bcl-2蛋白抑制钙信号的建模与全局动力学分析

牛帅, 帅建伟, 祁宏
PDF
导出引用
导出核心图
  • 钙离子(Ca2+)是生物体内一种“生死攸关”的信号分子,Bcl-2蛋白可以直接或间接调节IP3R通道释放Ca2+的能力,借此决定细胞命运.本文基于新近的实验成果,针对Bcl-2蛋白间接调控Ca2+的信号通路建立数学模型,得到了与实验数据相符合的结果,从理论上证明了Bcl-2蛋白对钙信号有抑制作用.在对模型进行鲁棒性检验之后,本文对该信号通路中一些关键组分的作用进行了预测.以[IP3]和[Bcl-2]为双分岔参数分析的结果表明Bcl-2对刺激强度能产生Ca2+振荡的区域有重要影响.以蛋白磷酸酶1[PP1]和蛋白激酶A[PKA]为单分岔参数分析的结果揭示:PP1可以有效地抑制钙信号,而PKA对钙信号的促进作用有一定的局限性.模型结果表明,不同浓度组合的IP3,Bcl-2和PKA会对钙信号发挥复杂的调控作用.本文不仅对相关生物学实验有一定的指导作用,而且可为治疗因钙信号失调而导致的疾病提供思路.
    [1]

    Berridge M J, Bootman M D, Roderick H L 2003 Nat. Rev. Mol. Cell Biol. 4 517

    [2]

    Orrenius S, Zhivotovsky B, Nicotera P 2003 Nat. Rev. Mol. Cell Biol. 4 552

    [3]

    Parekh A B 2011 Trends Biochem. Sci. 36 78

    [4]

    Gerasimenko J V, Gerasimenko O V, Palejwala A, Tepikin A V, Petersen O H, Watson A J 2002 J. Cell Sci. 115 485

    [5]

    Scorrano L, Oakes S A, Opferman J T, Cheng E H, Sorcinelli M D, Pozzan T, Korsmeyer S J 2003 Science 300 135

    [6]

    Florea A M, Splettstoesser F, Dopp E, Rettenmeier A W, Bsselberg D 2005 Toxicology 216 1

    [7]

    Boehning D, Patterson R L, Sedaghat L, Glebova N O, Kurosaki T, Snyder S H 2003 Nat. Cell Biol. 5 1051

    [8]

    Piacentini R, Gangitano C, Ceccariglia S, Fà A D, Azzena G B, Michetti F, Grassi C 2008 J. Neurochem. 105 2109

    [9]

    Kim I, Xu W, Reed J C 2008 Nat. Rev. Drug Discov. 7 1013

    [10]

    Qi H, Shuai J W 2016 Med. Hypotheses 89 28

    [11]

    Prole D L, Taylor C W 2016 J. Physiol. 594 2849

    [12]

    Foskett J K, White C, Cheung K H, Mak D O D 2007 Physiol. Rev. 87 593

    [13]

    Vervliet T, Parys J, Bultynck G 2016 Oncogene 35 5079

    [14]

    Rong Y P, Bultynck G, Aromolaran A S, Zhong F, Parys J B, de Smedt H, Mignery G A, Roderick H L, Bootman M D, Distelhorst C W 2009 Proc. Natl. Acad. Sci. USA 106 14397

    [15]

    Chang M J, Zhong F, Lavik A R, Parys J B, Berridge M J, Distelhorst C W 2014 Proc. Natl. Acad. Sci. USA 111 1186

    [16]

    Lu B Y, Yue H 2010 Acta Biophys. Sin. 26 406 (in Chinese)[鲁保云, 岳红 2010 生物物理学报 26 406]

    [17]

    Li X, Liu F, Shuai J W (in Chinese)[李翔, 刘锋, 帅建伟 2016 物理学报 65 178704]

    [18]

    Li Y X, Rinzel J 1994 J. Theor. Biol. 166 461

    [19]

    Ferrell J E, Ha S H 2014 Trends Biochem. Sci. 39 496

    [20]

    Li H, Rao A, Hogan P G 2011 Trends Cell Biol. 21 91

    [21]

    Yi M, Zhao Q, Tang J, Wang C 2011 Biophys. Chem. 157 33

    [22]

    Goldbeter A 1991 Proc. Natl. Acad. Sci. USA 88 9107

    [23]

    Parys J, Bezprozvanny I 1995 Cell Calcium 18 353

    [24]

    Svenningsson P, Nishi A, Fisone G, Girault J A, Nairn A C, Greengard P 2004 Annu. Rev. Pharmacol. Toxicol. 44 269

    [25]

    Shin S Y, Choo S M, Kim D, Baek S J, Wolkenhauer O, Cho K H 2006 FEBS Lett. 580 5965

    [26]

    Neves S R, Tsokas P, Sarkar A, Grace E A, Rangamani P, Taubenfeld S M, Alberini C M, Schaff J C, Blitzer R D, Moraru I I 2008 Cell 133 666

    [27]

    Lindner A U, Prehn J H, Huber H J 2013 Mol. Biosyst. 9 2359

    [28]

    Alzayady K J, Wang L, Chandrasekhar R, Wagner L E 2016 Sci. Signal. 9 ra35

    [29]

    De Young G W, Keizer J 1992 Proc. Natl. Acad. Sci. USA 89 9895

    [30]

    Shuai J W, Jung P 2003 Proc. Natl. Acad. Sci. USA 100 506

    [31]

    Qi H, Li L X, Shuai J W 2015 Sci. Rep. 5 7984

    [32]

    Sneyd J, Han J M, Wang L, Chen J, Yang X, Tanimura A, Sanderson M J, Kirk V, Yule D I 2017 Proc. Natl. Acad. Sci. USA 114 1456

    [33]

    Alon U 2007 Nat. Rev. Genet. 8 450

    [34]

    Dyachok O, Gylfe E 2004 J. Biol. Chem. 279 45455

    [35]

    Chaloux B, Caron A Z, Guillemette G 2007 Biol. Cell 99 379

    [36]

    Ceulemans H, Bollen M 2004 Physiol. Rev. 84 1

    [37]

    Bononi A, Agnoletto C, de Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P 2011 Enzym. Res. 2011 329098

    [38]

    Tang T S, Tu H P, Wang Z N, Bezprozvanny I 2003 J. Neurosci. 23 403

    [39]

    Luna-Vargas M P, Chipuk J E 2016 Trends Cell Biol. 26 906

    [40]

    Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski J M, Ramirez F G, Rizzuto R, Di Virgilio F, Zito E 2015 Proc. Natl. Acad. Sci. USA 112 1779

    [41]

    Roderick H L, Cook S J 2008 Nat. Rev. Cancer 8 361

    [42]

    Monteith G R, Prevarskaya N, Roberts-Thomson S J 2017 Nat. Rev. Cancer. 17 367

  • [1]

    Berridge M J, Bootman M D, Roderick H L 2003 Nat. Rev. Mol. Cell Biol. 4 517

    [2]

    Orrenius S, Zhivotovsky B, Nicotera P 2003 Nat. Rev. Mol. Cell Biol. 4 552

    [3]

    Parekh A B 2011 Trends Biochem. Sci. 36 78

    [4]

    Gerasimenko J V, Gerasimenko O V, Palejwala A, Tepikin A V, Petersen O H, Watson A J 2002 J. Cell Sci. 115 485

    [5]

    Scorrano L, Oakes S A, Opferman J T, Cheng E H, Sorcinelli M D, Pozzan T, Korsmeyer S J 2003 Science 300 135

    [6]

    Florea A M, Splettstoesser F, Dopp E, Rettenmeier A W, Bsselberg D 2005 Toxicology 216 1

    [7]

    Boehning D, Patterson R L, Sedaghat L, Glebova N O, Kurosaki T, Snyder S H 2003 Nat. Cell Biol. 5 1051

    [8]

    Piacentini R, Gangitano C, Ceccariglia S, Fà A D, Azzena G B, Michetti F, Grassi C 2008 J. Neurochem. 105 2109

    [9]

    Kim I, Xu W, Reed J C 2008 Nat. Rev. Drug Discov. 7 1013

    [10]

    Qi H, Shuai J W 2016 Med. Hypotheses 89 28

    [11]

    Prole D L, Taylor C W 2016 J. Physiol. 594 2849

    [12]

    Foskett J K, White C, Cheung K H, Mak D O D 2007 Physiol. Rev. 87 593

    [13]

    Vervliet T, Parys J, Bultynck G 2016 Oncogene 35 5079

    [14]

    Rong Y P, Bultynck G, Aromolaran A S, Zhong F, Parys J B, de Smedt H, Mignery G A, Roderick H L, Bootman M D, Distelhorst C W 2009 Proc. Natl. Acad. Sci. USA 106 14397

    [15]

    Chang M J, Zhong F, Lavik A R, Parys J B, Berridge M J, Distelhorst C W 2014 Proc. Natl. Acad. Sci. USA 111 1186

    [16]

    Lu B Y, Yue H 2010 Acta Biophys. Sin. 26 406 (in Chinese)[鲁保云, 岳红 2010 生物物理学报 26 406]

    [17]

    Li X, Liu F, Shuai J W (in Chinese)[李翔, 刘锋, 帅建伟 2016 物理学报 65 178704]

    [18]

    Li Y X, Rinzel J 1994 J. Theor. Biol. 166 461

    [19]

    Ferrell J E, Ha S H 2014 Trends Biochem. Sci. 39 496

    [20]

    Li H, Rao A, Hogan P G 2011 Trends Cell Biol. 21 91

    [21]

    Yi M, Zhao Q, Tang J, Wang C 2011 Biophys. Chem. 157 33

    [22]

    Goldbeter A 1991 Proc. Natl. Acad. Sci. USA 88 9107

    [23]

    Parys J, Bezprozvanny I 1995 Cell Calcium 18 353

    [24]

    Svenningsson P, Nishi A, Fisone G, Girault J A, Nairn A C, Greengard P 2004 Annu. Rev. Pharmacol. Toxicol. 44 269

    [25]

    Shin S Y, Choo S M, Kim D, Baek S J, Wolkenhauer O, Cho K H 2006 FEBS Lett. 580 5965

    [26]

    Neves S R, Tsokas P, Sarkar A, Grace E A, Rangamani P, Taubenfeld S M, Alberini C M, Schaff J C, Blitzer R D, Moraru I I 2008 Cell 133 666

    [27]

    Lindner A U, Prehn J H, Huber H J 2013 Mol. Biosyst. 9 2359

    [28]

    Alzayady K J, Wang L, Chandrasekhar R, Wagner L E 2016 Sci. Signal. 9 ra35

    [29]

    De Young G W, Keizer J 1992 Proc. Natl. Acad. Sci. USA 89 9895

    [30]

    Shuai J W, Jung P 2003 Proc. Natl. Acad. Sci. USA 100 506

    [31]

    Qi H, Li L X, Shuai J W 2015 Sci. Rep. 5 7984

    [32]

    Sneyd J, Han J M, Wang L, Chen J, Yang X, Tanimura A, Sanderson M J, Kirk V, Yule D I 2017 Proc. Natl. Acad. Sci. USA 114 1456

    [33]

    Alon U 2007 Nat. Rev. Genet. 8 450

    [34]

    Dyachok O, Gylfe E 2004 J. Biol. Chem. 279 45455

    [35]

    Chaloux B, Caron A Z, Guillemette G 2007 Biol. Cell 99 379

    [36]

    Ceulemans H, Bollen M 2004 Physiol. Rev. 84 1

    [37]

    Bononi A, Agnoletto C, de Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P 2011 Enzym. Res. 2011 329098

    [38]

    Tang T S, Tu H P, Wang Z N, Bezprozvanny I 2003 J. Neurosci. 23 403

    [39]

    Luna-Vargas M P, Chipuk J E 2016 Trends Cell Biol. 26 906

    [40]

    Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski J M, Ramirez F G, Rizzuto R, Di Virgilio F, Zito E 2015 Proc. Natl. Acad. Sci. USA 112 1779

    [41]

    Roderick H L, Cook S J 2008 Nat. Rev. Cancer 8 361

    [42]

    Monteith G R, Prevarskaya N, Roberts-Thomson S J 2017 Nat. Rev. Cancer. 17 367

  • [1] 陈增强, 袁著祉, 张 青, 王杰智. 共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究. 物理学报, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [2] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究. 物理学报, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [3] 贾红艳, 陈增强, 薛薇. 分数阶Lorenz系统的分析及电路实现 . 物理学报, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [4] 何圣仲, 周国华, 许建平, 包伯成, 杨平. V2控制Buck变换器等效建模与分岔分析. 物理学报, 2013, 62(11): 110503. doi: 10.7498/aps.62.110503
    [5] 钱伟长. 二度游离钙之光谱之分析. 物理学报, 1937, 6(1): 1-13. doi: 10.7498/aps.3.1
    [6] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析. 物理学报, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [7] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [8] 谢国锋, 肖松青. 钙钛矿铁电体原子势参数的灵敏度分析及优化. 物理学报, 2010, 59(7): 4808-4811. doi: 10.7498/aps.59.4808
    [9] 张叔英. 用于信号检测的时间压缩相关器理论分析. 物理学报, 1976, 149(3): 235-245. doi: 10.7498/aps.25.235
    [10] 吉世印, 陈世国, 刘万松. 基于小波分析的指数衰减信号高斯脉冲成形. 物理学报, 2008, 57(5): 2882-2887. doi: 10.7498/aps.57.2882
    [11] 贾亚青, 梁艳梅, 朱晓农. 光学相干层析信号的模拟分析与计算. 物理学报, 2007, 56(7): 3861-3866. doi: 10.7498/aps.56.3861
    [12] 焦阳, 简小华, 向永嘉, 崔崤峣. 光声信号的双谱分析方法研究. 物理学报, 2013, 62(8): 087803. doi: 10.7498/aps.62.087803
    [13] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析. 物理学报, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [14] 袁坚, 肖先赐. 混沌信号在子值域中的特性分析. 物理学报, 1997, 46(7): 1300-1306. doi: 10.7498/aps.46.1300
    [15] 李 明, 马西奎, 张 浩, 戴 栋. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析. 物理学报, 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [16] 徐 伟, 李 伟, 靳艳飞, 马少娟. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析. 物理学报, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [17] 季颖, 毕勤胜. 参外联合激励复合非线性振子的分岔分析. 物理学报, 2009, 58(7): 4431-4438. doi: 10.7498/aps.58.4431
    [18] 杨卓琴, 管亭亭, 甘春标, 张矫瑛. 双参数分岔平面内胰腺细胞的簇放电分析. 物理学报, 2011, 60(11): 110202. doi: 10.7498/aps.60.110202
    [19] 王发强, 马西奎, 闫晔. 不同开关频率下电压控制升压变换器中的Hopf分岔分析. 物理学报, 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
    [20] 谭涛亮, 张尧, 钟庆. 换流变分接头及直流控制器极限诱导分岔分析. 物理学报, 2012, 61(2): 020501. doi: 10.7498/aps.61.020501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  604
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-09
  • 修回日期:  2017-07-18
  • 刊出日期:  2017-12-05

Bcl-2蛋白抑制钙信号的建模与全局动力学分析

    基金项目: 

    国家自然科学基金(批准号:11504214,31370830,11675134)资助的课题.

摘要: 钙离子(Ca2+)是生物体内一种“生死攸关”的信号分子,Bcl-2蛋白可以直接或间接调节IP3R通道释放Ca2+的能力,借此决定细胞命运.本文基于新近的实验成果,针对Bcl-2蛋白间接调控Ca2+的信号通路建立数学模型,得到了与实验数据相符合的结果,从理论上证明了Bcl-2蛋白对钙信号有抑制作用.在对模型进行鲁棒性检验之后,本文对该信号通路中一些关键组分的作用进行了预测.以[IP3]和[Bcl-2]为双分岔参数分析的结果表明Bcl-2对刺激强度能产生Ca2+振荡的区域有重要影响.以蛋白磷酸酶1[PP1]和蛋白激酶A[PKA]为单分岔参数分析的结果揭示:PP1可以有效地抑制钙信号,而PKA对钙信号的促进作用有一定的局限性.模型结果表明,不同浓度组合的IP3,Bcl-2和PKA会对钙信号发挥复杂的调控作用.本文不仅对相关生物学实验有一定的指导作用,而且可为治疗因钙信号失调而导致的疾病提供思路.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回