搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌信号自适应协同滤波去噪

王梦蛟 周泽权 李志军 曾以成

混沌信号自适应协同滤波去噪

王梦蛟, 周泽权, 李志军, 曾以成
PDF
导出引用
导出核心图
  • 混沌信号协同滤波去噪算法充分利用了混沌信号的自相似结构特征,具有良好的信噪比提升性能.针对该算法的滤波参数优化问题,考虑到最优滤波参数的选取受到信号特征、采样频率和噪声水平的影响,为提高该算法的自适应性使其更符合实际应用需求,基于排列熵提出一种滤波参数自动优化准则.依据不同噪声水平的混沌信号排列熵的不同,首先选取不同滤波参数对含噪混沌信号进行去噪,然后计算各滤波参数对应重构信号的排列熵,最后通过比较各重构信号的排列熵,选取排列熵最小的重构信号对应的滤波参数为最优滤波参数,实现滤波参数的优化.分析了不同信号特征、采样频率和噪声水平情况下滤波参数的选取规律.仿真结果表明,该参数优化准则能在不同条件下对滤波参数进行有效的自动最优化,提高了混沌信号协同滤波去噪算法的自适应性.
      通信作者: 王梦蛟, wangmj@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61471310,11747087)、湖南省教育厅科学研究基金(批准号:17C1530)和湘潭大学自然科学基金(批准号:15XZX33)资助的课题.
    [1]

    L J H, Lu J A, Chen S H 2002 The Analysis and Applications of Chaotic Time Series (Wuhan:Wuhan University Press) pp1-8 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用(武汉:武汉大学出版社)第1–8页]

    [2]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [3]

    Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140

    [4]

    Li G Z, Zhang B 2017 IEEE Trans. Ind. Electron. 64 2255

    [5]

    Peng G Y, Min F H 2017 Nonlinear Dynam. 90 1607

    [6]

    Urbanowicz K, Hołyst J A 2003 Phys. Rev. E 67 046218

    [7]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing:Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理(北京:清华大学出版社)第32–35页]

    [8]

    Badii R, Broggi G, Derighetti B, Ravani M 1988 Phys. Rev. Lett. 60 979

    [9]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [10]

    Schreiber T, Richter M 1999 Int. J. Bifurcat. Chaos 9 2039

    [11]

    Donoho D L 1995 IEEE Trans. Inf. Theory 41 613

    [12]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Process. Lett. 14 62

    [13]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Process. 57 1351

    [14]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 050201]

    [15]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [16]

    Gao J B, Sultan H, Hu J, Tung W W 2010 IEEE Signal Process. Lett. 17 237

    [17]

    Chen Y, Liu X Y, Wu Z T, Fan Y, Ren Z L, Feng J C 2017 Acta Phys. Sin. 66 210501 (in Chinese) [陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超 2017 物理学报 66 210501]

    [18]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process. 16 2080

    [19]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Process. 9 88

    [20]

    Hou W, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 2663 (in Chinese) [侯威, 封国林, 董文杰, 李建平 2006 物理学报 55 2663]

    [21]

    Sun K H, He S B, Yin L Z, A D L·Duo L K 2012 Acta Phys. Sin. 61 130507 (in Chinese) [孙克辉, 贺少波, 尹林子, 阿地力·多力坤 2012 物理学报 61 130507]

    [22]

    Yu M Y, Sun K H, Liu W H, He S B 2018 Chaos Solitons Fractals 106 107

    [23]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [24]

    He S B, Sun K H, Wang H H 2016 Physical A 461 812

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [27]

    Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465

  • [1]

    L J H, Lu J A, Chen S H 2002 The Analysis and Applications of Chaotic Time Series (Wuhan:Wuhan University Press) pp1-8 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用(武汉:武汉大学出版社)第1–8页]

    [2]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [3]

    Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140

    [4]

    Li G Z, Zhang B 2017 IEEE Trans. Ind. Electron. 64 2255

    [5]

    Peng G Y, Min F H 2017 Nonlinear Dynam. 90 1607

    [6]

    Urbanowicz K, Hołyst J A 2003 Phys. Rev. E 67 046218

    [7]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing:Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理(北京:清华大学出版社)第32–35页]

    [8]

    Badii R, Broggi G, Derighetti B, Ravani M 1988 Phys. Rev. Lett. 60 979

    [9]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [10]

    Schreiber T, Richter M 1999 Int. J. Bifurcat. Chaos 9 2039

    [11]

    Donoho D L 1995 IEEE Trans. Inf. Theory 41 613

    [12]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Process. Lett. 14 62

    [13]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Process. 57 1351

    [14]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 050201]

    [15]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [16]

    Gao J B, Sultan H, Hu J, Tung W W 2010 IEEE Signal Process. Lett. 17 237

    [17]

    Chen Y, Liu X Y, Wu Z T, Fan Y, Ren Z L, Feng J C 2017 Acta Phys. Sin. 66 210501 (in Chinese) [陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超 2017 物理学报 66 210501]

    [18]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process. 16 2080

    [19]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Process. 9 88

    [20]

    Hou W, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 2663 (in Chinese) [侯威, 封国林, 董文杰, 李建平 2006 物理学报 55 2663]

    [21]

    Sun K H, He S B, Yin L Z, A D L·Duo L K 2012 Acta Phys. Sin. 61 130507 (in Chinese) [孙克辉, 贺少波, 尹林子, 阿地力·多力坤 2012 物理学报 61 130507]

    [22]

    Yu M Y, Sun K H, Liu W H, He S B 2018 Chaos Solitons Fractals 106 107

    [23]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [24]

    He S B, Sun K H, Wang H H 2016 Physical A 461 812

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [27]

    Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1350
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-01-06
  • 刊出日期:  2019-03-20

混沌信号自适应协同滤波去噪

  • 1. 湘潭大学信息工程学院, 湘潭 411105;
  • 2. 湘潭大学物理与光电工程学院, 湘潭 411105
  • 通信作者: 王梦蛟, wangmj@xtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61471310,11747087)、湖南省教育厅科学研究基金(批准号:17C1530)和湘潭大学自然科学基金(批准号:15XZX33)资助的课题.

摘要: 混沌信号协同滤波去噪算法充分利用了混沌信号的自相似结构特征,具有良好的信噪比提升性能.针对该算法的滤波参数优化问题,考虑到最优滤波参数的选取受到信号特征、采样频率和噪声水平的影响,为提高该算法的自适应性使其更符合实际应用需求,基于排列熵提出一种滤波参数自动优化准则.依据不同噪声水平的混沌信号排列熵的不同,首先选取不同滤波参数对含噪混沌信号进行去噪,然后计算各滤波参数对应重构信号的排列熵,最后通过比较各重构信号的排列熵,选取排列熵最小的重构信号对应的滤波参数为最优滤波参数,实现滤波参数的优化.分析了不同信号特征、采样频率和噪声水平情况下滤波参数的选取规律.仿真结果表明,该参数优化准则能在不同条件下对滤波参数进行有效的自动最优化,提高了混沌信号协同滤波去噪算法的自适应性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回