搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧空位缺陷对PbTiO3铁电薄膜漏电流的调控

佘彦超 张蔚曦 王应 罗开武 江小蔚

氧空位缺陷对PbTiO3铁电薄膜漏电流的调控

佘彦超, 张蔚曦, 王应, 罗开武, 江小蔚
PDF
导出引用
导出核心图
  • 基于非平衡格林函数及密度泛函理论第一性原理计算方法,计算了Fe,Al,V和Cu四种阳离子掺杂对氧空位缺陷引起的PbTiO3铁电薄膜漏电流的调控.研究表明:Fe和Al离子掺杂将会增大由其中氧空位缺陷导致的铁电薄膜的漏电流,而Cu和V离子掺杂对该漏电流的大小具有明显抑制作用.这是因为Cu和V掺杂对氧空位缺陷有明显的钉扎作用.相比于半径更大的Cu离子,由于V的离子半径更小,且更接近于PbTiO3铁电薄膜中Ti的离子半径,可以预言V离子更可能被掺杂进入薄膜,从而抑制氧空位缺陷引起的漏电流.研究结果对铁电薄膜器件的电学性能控制和优化有一定的理论指导意义.
      通信作者: 张蔚曦, zhangwwxx@sina.com
    • 基金项目: 国家自然科学基金(批准号:11747168,11604246)、贵州省教育厅科研项目(批准号:KY[2015]384,KY[2015]446,KY[2017]053)、贵州省科技厅联合基金项目(批准号:LH[2015]7228)和铜仁学院博士启动课题项目(批准号:trxyDH1529)资助的课题.
    [1]

    Scott J F, de Araujo C A P 1989 Science 246 1400

    [2]

    Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [3]

    Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413

    [4]

    Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486

    [5]

    de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145

    [6]

    Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750

    [7]

    Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602

    [8]

    Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602

    [9]

    Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014

    [10]

    Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201

    [11]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [12]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [13]

    Jia C, Urban K 2004 Science 303 2001

    [14]

    Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116

    [15]

    Park C, Chadi D 1998 Phys. Rev. B 57 13961

    [16]

    Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 物理学报 59 1302]

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747

    [20]

    Baldereschi A 1973 Phys. Rev. B 7 5212

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [23]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253

    [24]

    Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382

    [25]

    Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

  • [1]

    Scott J F, de Araujo C A P 1989 Science 246 1400

    [2]

    Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [3]

    Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413

    [4]

    Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486

    [5]

    de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145

    [6]

    Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750

    [7]

    Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602

    [8]

    Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602

    [9]

    Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014

    [10]

    Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201

    [11]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [12]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [13]

    Jia C, Urban K 2004 Science 303 2001

    [14]

    Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116

    [15]

    Park C, Chadi D 1998 Phys. Rev. B 57 13961

    [16]

    Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 物理学报 59 1302]

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747

    [20]

    Baldereschi A 1973 Phys. Rev. B 7 5212

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [23]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253

    [24]

    Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382

    [25]

    Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

  • [1] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [2] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应. 物理学报, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [3] 贾建峰, 黄 凯, 潘清涛, 李世国, 贺德衍. 溶胶-凝胶法制备MgO/(Ba0.8Sr0.2)TiO3多层薄膜及其介电和漏电特性研究. 物理学报, 2006, 55(4): 2069-2072. doi: 10.7498/aps.55.2069
    [4] 杨昌平, 陈顺生, 戴 琪, 郭定和, 王 浩. Nd0.67Sr0.33MnOy(y<3.0)中的自旋相关电致电阻效应. 物理学报, 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [5] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究. 物理学报, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [6] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型. 物理学报, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [7] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究 . 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [8] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [9] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [10] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [11] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [12] 孙正昊, 向鹏, 兰民, 孙源, 明星, 孟醒, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [13] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [14] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [15] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [16] 谢东, 冷永祥, 黄楠. C掺杂TiO薄膜的制备及其第一性原理研究. 物理学报, 2013, 62(19): 198103. doi: 10.7498/aps.62.198103
    [17] 孙源, 黄祖飞, 明星, 王春忠, 陈岗, 范厚刚. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [18] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [19] 杨春, 杨冲. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [20] 杨亮, 王才壮, 林仕伟, 曹阳. 氧原子在钛晶体中扩散的第一性原理研究. 物理学报, 2017, 66(11): 116601. doi: 10.7498/aps.66.116601
  • 引用本文:
    Citation:
计量
  • 文章访问数:  420
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-10
  • 修回日期:  2018-08-02
  • 刊出日期:  2019-09-20

氧空位缺陷对PbTiO3铁电薄膜漏电流的调控

  • 1. 铜仁学院物理与电子工程系, 铜仁 554300;
  • 2. 湘潭大学物理与光电工程学院, 湘潭 411105
  • 通信作者: 张蔚曦, zhangwwxx@sina.com
    基金项目: 

    国家自然科学基金(批准号:11747168,11604246)、贵州省教育厅科研项目(批准号:KY[2015]384,KY[2015]446,KY[2017]053)、贵州省科技厅联合基金项目(批准号:LH[2015]7228)和铜仁学院博士启动课题项目(批准号:trxyDH1529)资助的课题.

摘要: 基于非平衡格林函数及密度泛函理论第一性原理计算方法,计算了Fe,Al,V和Cu四种阳离子掺杂对氧空位缺陷引起的PbTiO3铁电薄膜漏电流的调控.研究表明:Fe和Al离子掺杂将会增大由其中氧空位缺陷导致的铁电薄膜的漏电流,而Cu和V离子掺杂对该漏电流的大小具有明显抑制作用.这是因为Cu和V掺杂对氧空位缺陷有明显的钉扎作用.相比于半径更大的Cu离子,由于V的离子半径更小,且更接近于PbTiO3铁电薄膜中Ti的离子半径,可以预言V离子更可能被掺杂进入薄膜,从而抑制氧空位缺陷引起的漏电流.研究结果对铁电薄膜器件的电学性能控制和优化有一定的理论指导意义.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回