搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅衬底GaN基LED N极性n型欧姆接触研究

封飞飞 刘军林 邱冲 王光绪 江风益

硅衬底GaN基LED N极性n型欧姆接触研究

封飞飞, 刘军林, 邱冲, 王光绪, 江风益
PDF
导出引用
  • 在Si衬底GaN基垂直结构LED的N极性n型面上,利用电子束蒸发的方法制作了Ti/Al电极,通过了I-V曲线研究了有无AlN缓冲层对这种芯片欧姆接触的影响.结果显示,去除AlN缓冲层后的N极性n型面与Ti/Al电极在500到600 ℃范围内退火才能形成欧姆接触.而保留AlN缓冲层的N极性n型面与Ti/Al电极未退火时就表现为较好的欧姆接触,比接触电阻率为2×10-5 Ω·cm2,即使退火温度升高至600 ℃,也始终保持着欧姆接触特性.因此,AlN缓冲层的存在是Si衬底GaN基垂直结构LED获得高热稳定性n型欧姆接触的关键.
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA03A128),教育部长江学者与创新团队发展计划(批准号:IRT0730)资助的课题.
    [1]

    Jiang Y, Luo Y, Wang L, Li H T, Xi G Y, Zhao W, Han Y J 2009 Acta Phys. Sin. 58 3468 ( in Chinese ) [江 洋、罗 毅、汪 莱、李洪涛、席光义、赵 维、韩彦军 2009 物理学报 58 3468 ]

    [2]

    Lee Y J, Lin S Y, Chiu C H, Lu T C, Kuo H C, Wang S C, Chhajed S, Kim J K, Schubert E F 2009 Appl. Phys. Lett. 94 1111

    [3]

    Song X Y, Zeng X H, Zhang J B, Zeng X H, Dong Y J 2010 Acta Phys. Sin. 59 ( in Chinese ) [宋雪云、曾祥华、张俊兵、曾祥华、董雅娟 2010 物理学报 59 ]

    [4]

    Guo X, Schubert E F 2001 J. Appl. Phys. 90 4191

    [5]

    Guo X, Schubert E F 2001 Appl. Phys. Lett. 78 3337

    [6]

    Shen G D, Zhang J M, Zou D S, Xu C, Gu X L 2008 Acta Phys. Sin. 57 472 ( in Chinese ) [沈光地、张剑铭、邹德恕、徐 晨、顾晓玲 2008 物理学报 57 472 ]

    [7]

    Xue Z Q, Chen C, Huang S R, Zhang B P 2010 Acta Phys. Sin. 59 7( in Chinese ) [薛正朝、陈 朝、黄生荣、张保平 2010 物理学报 59 7 ]

    [8]

    Cao X A, Arthur S D 2004 Appl. Phys. Lett. 85 3971

    [9]

    Tan B S, Yuan S, Kang X J 2004 Appl. Phys. Lett. 84 2757

    [10]

    Xiong C B, Jiang F Y, Fang W Q, W L 2007 J. Lumin. 122-123 185

    [11]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 ( in Chinese ) [熊传兵、江风益、方文卿、王 立、莫春兰 2008 物理学报 57 3176 ]

    [12]

    Jang H W, Lee S, Ryu S W, Son J H, Song Y H, Lee J L 2009 Electrochem. Solid-State Lett. 12 H405

    [13]

    Jung S Y, Seong T Y, Kim H, Park K S, Park J G, Namgoong G 2009 Electrochem. Solid-State Lett. 12 H275

    [14]

    Kim H, Ryou J H, Dupuis R D, Lee S N, Park Y, Jeon J W, Seong T Y 2008 Appl. Phys. Lett. 93 2106

    [15]

    Jang T, Lee S N, Nam O H, Park Y 2006 Appl. Phys. Lett. 88

    [16]

    Kwak J S, Lee K Y, Han J Y, Cho J, Chae S, Nam O H, Park Y 2001 Appl. Phys. Lett. 79 3254

    [17]

    Jeon J W, Seong T Y, Kim H, Kim K K 2009 Appl. Phys. Lett. 94 2102

    [18]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth. 285 312

    [19]

    Pelletier J, Gervais D, Pomot C 1983 J. Appl. Phys. 55 994

    [20]

    Mohammad S N 2006 J. Appl. Phys. 100 3708

    [21]

    Luther B P, DeLucca J M, Mohney S E, Karlicek J R F 2006 Appl. Phys. Lett. 71 3859

  • [1]

    Jiang Y, Luo Y, Wang L, Li H T, Xi G Y, Zhao W, Han Y J 2009 Acta Phys. Sin. 58 3468 ( in Chinese ) [江 洋、罗 毅、汪 莱、李洪涛、席光义、赵 维、韩彦军 2009 物理学报 58 3468 ]

    [2]

    Lee Y J, Lin S Y, Chiu C H, Lu T C, Kuo H C, Wang S C, Chhajed S, Kim J K, Schubert E F 2009 Appl. Phys. Lett. 94 1111

    [3]

    Song X Y, Zeng X H, Zhang J B, Zeng X H, Dong Y J 2010 Acta Phys. Sin. 59 ( in Chinese ) [宋雪云、曾祥华、张俊兵、曾祥华、董雅娟 2010 物理学报 59 ]

    [4]

    Guo X, Schubert E F 2001 J. Appl. Phys. 90 4191

    [5]

    Guo X, Schubert E F 2001 Appl. Phys. Lett. 78 3337

    [6]

    Shen G D, Zhang J M, Zou D S, Xu C, Gu X L 2008 Acta Phys. Sin. 57 472 ( in Chinese ) [沈光地、张剑铭、邹德恕、徐 晨、顾晓玲 2008 物理学报 57 472 ]

    [7]

    Xue Z Q, Chen C, Huang S R, Zhang B P 2010 Acta Phys. Sin. 59 7( in Chinese ) [薛正朝、陈 朝、黄生荣、张保平 2010 物理学报 59 7 ]

    [8]

    Cao X A, Arthur S D 2004 Appl. Phys. Lett. 85 3971

    [9]

    Tan B S, Yuan S, Kang X J 2004 Appl. Phys. Lett. 84 2757

    [10]

    Xiong C B, Jiang F Y, Fang W Q, W L 2007 J. Lumin. 122-123 185

    [11]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 ( in Chinese ) [熊传兵、江风益、方文卿、王 立、莫春兰 2008 物理学报 57 3176 ]

    [12]

    Jang H W, Lee S, Ryu S W, Son J H, Song Y H, Lee J L 2009 Electrochem. Solid-State Lett. 12 H405

    [13]

    Jung S Y, Seong T Y, Kim H, Park K S, Park J G, Namgoong G 2009 Electrochem. Solid-State Lett. 12 H275

    [14]

    Kim H, Ryou J H, Dupuis R D, Lee S N, Park Y, Jeon J W, Seong T Y 2008 Appl. Phys. Lett. 93 2106

    [15]

    Jang T, Lee S N, Nam O H, Park Y 2006 Appl. Phys. Lett. 88

    [16]

    Kwak J S, Lee K Y, Han J Y, Cho J, Chae S, Nam O H, Park Y 2001 Appl. Phys. Lett. 79 3254

    [17]

    Jeon J W, Seong T Y, Kim H, Kim K K 2009 Appl. Phys. Lett. 94 2102

    [18]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth. 285 312

    [19]

    Pelletier J, Gervais D, Pomot C 1983 J. Appl. Phys. 55 994

    [20]

    Mohammad S N 2006 J. Appl. Phys. 100 3708

    [21]

    Luther B P, DeLucca J M, Mohney S E, Karlicek J R F 2006 Appl. Phys. Lett. 71 3859

  • 引用本文:
    Citation:
计量
  • 文章访问数:  6088
  • PDF下载量:  1137
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-04
  • 修回日期:  2009-12-22
  • 刊出日期:  2010-04-05

硅衬底GaN基LED N极性n型欧姆接触研究

  • 1. (1)晶能光电(江西)有限公司,南昌 330029; (2)南昌大学教育部发光材料与器件工程研究中心,南昌 330047; (3)南昌大学教育部发光材料与器件工程研究中心,南昌 330047; 晶能光电(江西)有限公司,南昌 330029; (4)南昌大学教育部发光材料与器件工程研究中心,南昌 330047;晶能光电(江西)有限公司,南昌 330029
    基金项目: 

    国家高技术研究发展计划(批准号:2006AA03A128),教育部长江学者与创新团队发展计划(批准号:IRT0730)资助的课题.

摘要: 在Si衬底GaN基垂直结构LED的N极性n型面上,利用电子束蒸发的方法制作了Ti/Al电极,通过了I-V曲线研究了有无AlN缓冲层对这种芯片欧姆接触的影响.结果显示,去除AlN缓冲层后的N极性n型面与Ti/Al电极在500到600 ℃范围内退火才能形成欧姆接触.而保留AlN缓冲层的N极性n型面与Ti/Al电极未退火时就表现为较好的欧姆接触,比接触电阻率为2×10-5 Ω·cm2,即使退火温度升高至600 ℃,也始终保持着欧姆接触特性.因此,AlN缓冲层的存在是Si衬底GaN基垂直结构LED获得高热稳定性n型欧姆接触的关键.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回