搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面效应对锂离子电池正极材料LiMn2O4性能的影响

胡国进 欧阳楚英

表面效应对锂离子电池正极材料LiMn2O4性能的影响

胡国进, 欧阳楚英
PDF
导出引用
  • 应用基于自旋极化和广义梯度近似(generalized gradient approximation,GGA)的密度泛函理论计算,研究了锂离子电池正极材料LiMn2O4 (001)表面原子和电子结构.发现表面和亚表面附近的原子在垂直于(001)面的方向上具有非常大的弛豫,这对LiMn2O4材料在锂离子电池中应用时发现的表面Mn的溶解现象有很大关联.由于表面效应,在LiMn2O4 (001) 表面只有三价Mn3+离子存在,而这些三价锰离子非常活跃,在该材料电极/电解液界面很容易发生歧化反应,从而加速了Mn的溶解.其他计算结果也和实验观察相符合.
    • 基金项目: 国家自然科学基金 (批准号: 10604023)和江西省教育厅科研项目(批准号: JGG10398)资助的课题.
    [1]

    Zhou Z, Yan T Y, Gao X P 2006 Acta Phys. Chim. Sin. 22 1168

    [2]

    Tarascon J M, McKinnon W R, Coowar F, Bowmer T N, Amatucci G, Guyomard D 1994 J. Electrochem. Soc. 141 1421

    [3]

    Goodenough J B 1994 Solid State Ionics 69 184

    [4]

    Yamada I, Abe T, Iriyama Y, Ogumi Z 2003 Electrochem. Comm. 5 502

    [5]

    Eriksson T, Gustafsson T, Thomas J 2002 Electrochem. Solid-State Lett. 5 A35

    [6]

    Eftekhari A 2004 Solid State Ionics 167 237

    [7]

    Kannan A M, Manthiram A 2002 Electrochem. Solid-State Lett. 5 A167

    [8]

    Thackeray M M, David W F, Bruce P G, Goodenough J B 1983 Mater. Res. Bull. 18 461

    [9]

    Gummow R J, Kock A, Thackeray M M 1994 Solid State Ionics 69 59

    [10]

    Choi W, Manthiram A 2006 J. Electrochem. Soc. 153 A1760

    [11]

    Gao Y, Reimers J N, Dahn J R 1996 Phys. Rev. B 54 3837

    [12]

    Mishra S K, Ceder G 1999 Phys. Rev. B 59 6120

    [13]

    Morgan D, Wang B, Ceder G, Walle A V 2003 Phys. Rev. B 67 134404

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Solid State Commun. 130 501

    [15]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Europhys. Lett. 67 28

    [16]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 373 2796

    [17]

    Liu H Y, Hou Z F, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 1732 (in Chinese) [刘慧英、 侯柱锋、 朱梓忠、 黄美纯、 杨 勇 2003 物理学报 52 1732]

    [18]

    Jin S Z, Huang Z F, Ming X, Wang C Z, Meng X, Chen G 2007 Acta Phys. Sin. 56 6008 (in Chinese) [金胜哲、 黄祖飞、 明 星、 王春忠、 孟 醒、 陈 岗 2007 物理学报 56 6008]

    [19]

    Zhong Z Y, Nie Z Y, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. B 18 2492

    [20]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [21]

    Free DFT simulation package DACAPO: https://wiki.fysik.dtu.dk/dacapo

    [22]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. 1992 Phys. Rev. B 46 6671

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 R7892

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1]

    Zhou Z, Yan T Y, Gao X P 2006 Acta Phys. Chim. Sin. 22 1168

    [2]

    Tarascon J M, McKinnon W R, Coowar F, Bowmer T N, Amatucci G, Guyomard D 1994 J. Electrochem. Soc. 141 1421

    [3]

    Goodenough J B 1994 Solid State Ionics 69 184

    [4]

    Yamada I, Abe T, Iriyama Y, Ogumi Z 2003 Electrochem. Comm. 5 502

    [5]

    Eriksson T, Gustafsson T, Thomas J 2002 Electrochem. Solid-State Lett. 5 A35

    [6]

    Eftekhari A 2004 Solid State Ionics 167 237

    [7]

    Kannan A M, Manthiram A 2002 Electrochem. Solid-State Lett. 5 A167

    [8]

    Thackeray M M, David W F, Bruce P G, Goodenough J B 1983 Mater. Res. Bull. 18 461

    [9]

    Gummow R J, Kock A, Thackeray M M 1994 Solid State Ionics 69 59

    [10]

    Choi W, Manthiram A 2006 J. Electrochem. Soc. 153 A1760

    [11]

    Gao Y, Reimers J N, Dahn J R 1996 Phys. Rev. B 54 3837

    [12]

    Mishra S K, Ceder G 1999 Phys. Rev. B 59 6120

    [13]

    Morgan D, Wang B, Ceder G, Walle A V 2003 Phys. Rev. B 67 134404

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Solid State Commun. 130 501

    [15]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Europhys. Lett. 67 28

    [16]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 373 2796

    [17]

    Liu H Y, Hou Z F, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 1732 (in Chinese) [刘慧英、 侯柱锋、 朱梓忠、 黄美纯、 杨 勇 2003 物理学报 52 1732]

    [18]

    Jin S Z, Huang Z F, Ming X, Wang C Z, Meng X, Chen G 2007 Acta Phys. Sin. 56 6008 (in Chinese) [金胜哲、 黄祖飞、 明 星、 王春忠、 孟 醒、 陈 岗 2007 物理学报 56 6008]

    [19]

    Zhong Z Y, Nie Z Y, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. B 18 2492

    [20]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [21]

    Free DFT simulation package DACAPO: https://wiki.fysik.dtu.dk/dacapo

    [22]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. 1992 Phys. Rev. B 46 6671

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 R7892

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4715
  • PDF下载量:  883
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-12
  • 修回日期:  2010-03-23
  • 刊出日期:  2010-04-05

表面效应对锂离子电池正极材料LiMn2O4性能的影响

  • 1. (1)江西教育学院,南昌 330029;江西师范大学物理系,南昌 330022; (2)江西师范大学物理系,南昌 330022
    基金项目: 

    国家自然科学基金 (批准号: 10604023)和江西省教育厅科研项目(批准号: JGG10398)资助的课题.

摘要: 应用基于自旋极化和广义梯度近似(generalized gradient approximation,GGA)的密度泛函理论计算,研究了锂离子电池正极材料LiMn2O4 (001)表面原子和电子结构.发现表面和亚表面附近的原子在垂直于(001)面的方向上具有非常大的弛豫,这对LiMn2O4材料在锂离子电池中应用时发现的表面Mn的溶解现象有很大关联.由于表面效应,在LiMn2O4 (001) 表面只有三价Mn3+离子存在,而这些三价锰离子非常活跃,在该材料电极/电解液界面很容易发生歧化反应,从而加速了Mn的溶解.其他计算结果也和实验观察相符合.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回