搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方五次方非线性Schrodinger方程的动力学性质研究

花巍 刘学深

立方五次方非线性Schrodinger方程的动力学性质研究

花巍, 刘学深
PDF
导出引用
  • 采用辛算法数值求解了一维立方五次方非线性Schrdinger方程,研究了不同非线性参数下非线性Schrdinger方程的动力学性质.数值结果表明,随着立方非线性参数的增加,系统经历了拟周期状态、混沌状态和周期状态,且在五次方项的调制下,呼吸子解可以退化为单孤子解.
    • 基金项目: 国家自然科学基金(批准号:10974068,11174108)资助的课题.
    [1]

    Kim J I, Park H K, Moon H T 1997 Phys. Rev. E 55 3948

    [2]

    Tajiri M, Watanabe Y 1998 Phys. Rev. E 57 3510

    [3]
    [4]
    [5]

    Muslu G M, Erbay H A 2005 Math. Comput. Simulat. 67 581

    [6]
    [7]

    Dehghan M, Taleei A 2010 Comput. Phys. Commun. 181 43

    [8]
    [9]

    Cai D, Bishop A R, Grnbech J, Malomed B A 1994 Phys. Rev. E 49 R1000

    [10]
    [11]

    Zong F D, Yang Y, Zhang J F 2009 Acta Phys. Sin. 58 3670 (in Chinese)

    [12]
    [13]

    Zheng X P, Lin J, Han P 2010 Acta Phys. Sin. 59 6752 (in Chinese)

    [14]
    [15]

    Liu H, He X T, Lou S Y 2002 Chin. Phys. Lett. 19 87

    [16]
    [17]

    Sun J Q, Gu X Y, Ma Z Q 2004 Chin. J. Comput. Phys. 21 321(in Chinese)

    [18]
    [19]

    Qiao B, Zhou C T, He X T, Lai C H 2008 Commun. Comput. Phys. 4 1129

    [20]
    [21]

    Liu X S, Ding P Z 2004 J. Phys. A 37 1589

    [22]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys. Sin. 56 604 (in Chinese)

    [23]
    [24]
    [25]

    Liu X S, Qi Y Y, Ding P Z 2004 Chin. Phys. Lett. 21 2081

    [26]

    Luo X Y, Liu X S, Ding P Z 2007 J. At. Mol. Phys. 24 418(in Chinese)

    [27]
    [28]
    [29]

    Chang Q S, Jia E, Sun W 1999 J. Comput. Phys. 148 397

    [30]

    Muruganandam P, Adhikari S K 2009 Comput. Phys. Commun. 180 1888

    [31]
    [32]
    [33]

    Feng K 1986 J. Comput. Math. 4 279

    [34]

    Tang Y F, Vzquez L, Zhang F, Prez-Garca V M 1996 Comput. Math. Applic. 32 73

    [35]
    [36]

    Sun J Q, Ma Z Q, Hua W, Qin M Z 2006 Appl. Math. Comput. 177 446

    [37]
    [38]
    [39]

    Liu X S, Qi Y Y, He J F, Ding P Z 2007 Commun. Comput. Phys. 2 1

    [40]

    Khler T 2002 Phys. Rev. Lett. 89 210404

    [41]
    [42]
    [43]

    Liu H, Wei J Y, Lou S Y, He X T 2008 Acta Phys. Sin. 57 1343 (in Chinese)

    [44]
    [45]
    [46]
    [47]
    [48]
    [49]
    [50]
    [51]
    [52]
    [53]
    [54]
    [55]
    [56]
    [57]
    [58]
    [59]
    [60]
    [61]
    [62]
    [63]
    [64]
    [65]
    [66]
    [67]
    [68]
    [69]
    [70]
    [71]
    [72]
    [73]
    [74]
    [75]
    [76]
    [77]
    [78]
    [79]
    [80]
    [81]
    [82]
    [83]
    [84]
    [85]
  • [1]

    Kim J I, Park H K, Moon H T 1997 Phys. Rev. E 55 3948

    [2]

    Tajiri M, Watanabe Y 1998 Phys. Rev. E 57 3510

    [3]
    [4]
    [5]

    Muslu G M, Erbay H A 2005 Math. Comput. Simulat. 67 581

    [6]
    [7]

    Dehghan M, Taleei A 2010 Comput. Phys. Commun. 181 43

    [8]
    [9]

    Cai D, Bishop A R, Grnbech J, Malomed B A 1994 Phys. Rev. E 49 R1000

    [10]
    [11]

    Zong F D, Yang Y, Zhang J F 2009 Acta Phys. Sin. 58 3670 (in Chinese)

    [12]
    [13]

    Zheng X P, Lin J, Han P 2010 Acta Phys. Sin. 59 6752 (in Chinese)

    [14]
    [15]

    Liu H, He X T, Lou S Y 2002 Chin. Phys. Lett. 19 87

    [16]
    [17]

    Sun J Q, Gu X Y, Ma Z Q 2004 Chin. J. Comput. Phys. 21 321(in Chinese)

    [18]
    [19]

    Qiao B, Zhou C T, He X T, Lai C H 2008 Commun. Comput. Phys. 4 1129

    [20]
    [21]

    Liu X S, Ding P Z 2004 J. Phys. A 37 1589

    [22]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys. Sin. 56 604 (in Chinese)

    [23]
    [24]
    [25]

    Liu X S, Qi Y Y, Ding P Z 2004 Chin. Phys. Lett. 21 2081

    [26]

    Luo X Y, Liu X S, Ding P Z 2007 J. At. Mol. Phys. 24 418(in Chinese)

    [27]
    [28]
    [29]

    Chang Q S, Jia E, Sun W 1999 J. Comput. Phys. 148 397

    [30]

    Muruganandam P, Adhikari S K 2009 Comput. Phys. Commun. 180 1888

    [31]
    [32]
    [33]

    Feng K 1986 J. Comput. Math. 4 279

    [34]

    Tang Y F, Vzquez L, Zhang F, Prez-Garca V M 1996 Comput. Math. Applic. 32 73

    [35]
    [36]

    Sun J Q, Ma Z Q, Hua W, Qin M Z 2006 Appl. Math. Comput. 177 446

    [37]
    [38]
    [39]

    Liu X S, Qi Y Y, He J F, Ding P Z 2007 Commun. Comput. Phys. 2 1

    [40]

    Khler T 2002 Phys. Rev. Lett. 89 210404

    [41]
    [42]
    [43]

    Liu H, Wei J Y, Lou S Y, He X T 2008 Acta Phys. Sin. 57 1343 (in Chinese)

    [44]
    [45]
    [46]
    [47]
    [48]
    [49]
    [50]
    [51]
    [52]
    [53]
    [54]
    [55]
    [56]
    [57]
    [58]
    [59]
    [60]
    [61]
    [62]
    [63]
    [64]
    [65]
    [66]
    [67]
    [68]
    [69]
    [70]
    [71]
    [72]
    [73]
    [74]
    [75]
    [76]
    [77]
    [78]
    [79]
    [80]
    [81]
    [82]
    [83]
    [84]
    [85]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3087
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-31
  • 修回日期:  2011-02-18
  • 刊出日期:  2011-11-15

立方五次方非线性Schrodinger方程的动力学性质研究

  • 1. 吉林大学原子与分子物理研究所,长春 130012
    基金项目: 

    国家自然科学基金(批准号:10974068,11174108)资助的课题.

摘要: 采用辛算法数值求解了一维立方五次方非线性Schrdinger方程,研究了不同非线性参数下非线性Schrdinger方程的动力学性质.数值结果表明,随着立方非线性参数的增加,系统经历了拟周期状态、混沌状态和周期状态,且在五次方项的调制下,呼吸子解可以退化为单孤子解.

English Abstract

参考文献 (85)

目录

    /

    返回文章
    返回